Various changes relating to zprobe and non-volatile data
1. Z-probing is now done in two stages: a fast stage at the configured home feed rate until within 10% of the target value, then a slow stage at 20% of that feed rate. 2. Provisional support for ultrasonic Z-probe. 3. Added calibration temperature and height temperature coefficient to Z probe parameters. 4. Z-probe parameters and Z-probe type are now saved to flash memory so that they survive power-off and reset cycles. Separate parameters are retained for IR and ultrasonic probes in case both are fitted. 5. Fixed issue with doing slow Z-moves immediately after Z-homing or probing.
This commit is contained in:
parent
b43af6a8fd
commit
92c17dede2
15 changed files with 3384 additions and 1408 deletions
|
@ -24,8 +24,8 @@ Licence: GPL
|
|||
#define CONFIGURATION_H
|
||||
|
||||
#define NAME "RepRapFirmware"
|
||||
#define VERSION "0.57n-dc42"
|
||||
#define DATE "2014-02-18"
|
||||
#define VERSION "0.57o-dc42"
|
||||
#define DATE "2014-02-24"
|
||||
#define LAST_AUTHOR "dc42"
|
||||
|
||||
// Other firmware that we might switch to be compatible with.
|
||||
|
|
83
Flash/DueFlashStorage.cpp
Normal file
83
Flash/DueFlashStorage.cpp
Normal file
|
@ -0,0 +1,83 @@
|
|||
#include "DueFlashStorage.h"
|
||||
|
||||
void DueFlashStorage::init() {
|
||||
/* Initialize flash: 6 wait states for flash writing. */
|
||||
uint32_t retCode = flash_init(FLASH_ACCESS_MODE_128, 6);
|
||||
if (retCode != FLASH_RC_OK) {
|
||||
_FLASH_DEBUG("Flash init failed\n");
|
||||
}
|
||||
}
|
||||
|
||||
byte DueFlashStorage::read(uint32_t address) {
|
||||
return FLASH_START[address];
|
||||
}
|
||||
|
||||
void DueFlashStorage::read(uint32_t address, void *data, uint32_t dataLength) {
|
||||
memcpy(data, FLASH_START+address, dataLength);
|
||||
}
|
||||
|
||||
bool DueFlashStorage::write(uint32_t address, byte value) {
|
||||
uint32_t byteLength = 1;
|
||||
uint32_t retCode = flash_unlock((uint32_t)FLASH_START+address, (uint32_t)FLASH_START+address + byteLength - 1, 0, 0);
|
||||
if (retCode != FLASH_RC_OK) {
|
||||
_FLASH_DEBUG("Failed to unlock flash for write\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
// write data
|
||||
retCode = flash_write((uint32_t)FLASH_START+address, &value, byteLength, 1);
|
||||
|
||||
if (retCode != FLASH_RC_OK) {
|
||||
_FLASH_DEBUG("Flash write failed\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
// Lock page
|
||||
retCode = flash_lock((uint32_t)FLASH_START+address, (uint32_t)FLASH_START+address + byteLength - 1, 0, 0);
|
||||
if (retCode != FLASH_RC_OK) {
|
||||
_FLASH_DEBUG("Failed to lock flash page\n");
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool DueFlashStorage::write(uint32_t address, const void *data, uint32_t dataLength) {
|
||||
if ((uint32_t)FLASH_START+address < IFLASH1_ADDR) {
|
||||
_FLASH_DEBUG("Flash write address too low\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
if ((uint32_t)FLASH_START+address >= (IFLASH1_ADDR + IFLASH1_SIZE)) {
|
||||
_FLASH_DEBUG("Flash write address too high\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
if (((uint32_t)FLASH_START+address & 3) != 0) {
|
||||
_FLASH_DEBUG("Flash start address must be on four byte boundary\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
// Unlock page
|
||||
uint32_t retCode = flash_unlock((uint32_t)FLASH_START+address, (uint32_t)FLASH_START+address + dataLength - 1, 0, 0);
|
||||
if (retCode != FLASH_RC_OK) {
|
||||
_FLASH_DEBUG("Failed to unlock flash for write\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
// write data
|
||||
retCode = flash_write((uint32_t)FLASH_START+address, data, dataLength, 1);
|
||||
|
||||
if (retCode != FLASH_RC_OK) {
|
||||
_FLASH_DEBUG("Flash write failed\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
// Lock page
|
||||
retCode = flash_lock((uint32_t)FLASH_START+address, (uint32_t)FLASH_START+address + dataLength - 1, 0, 0);
|
||||
if (retCode != FLASH_RC_OK) {
|
||||
_FLASH_DEBUG("Failed to lock flash page\n");
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
52
Flash/DueFlashStorage.h
Normal file
52
Flash/DueFlashStorage.h
Normal file
|
@ -0,0 +1,52 @@
|
|||
/*
|
||||
DueFlashStorage saves non-volatile data for Arduino Due.
|
||||
The library is made to be similar to EEPROM library
|
||||
Uses flash block 1 per default.
|
||||
|
||||
Note: uploading new software will erase all flash so data written to flash
|
||||
using this library will not survive a new software upload.
|
||||
|
||||
Inspiration from Pansenti at https://github.com/Pansenti/DueFlash
|
||||
Rewritten and modified by Sebastian Nilsson
|
||||
Further modified up by David Crocker
|
||||
*/
|
||||
|
||||
|
||||
#ifndef DUEFLASHSTORAGE_H
|
||||
#define DUEFLASHSTORAGE_H
|
||||
|
||||
#include <Arduino.h>
|
||||
#include "flash_efc.h"
|
||||
#include "efc.h"
|
||||
|
||||
// 1Kb of data
|
||||
#define DATA_LENGTH ((IFLASH1_PAGE_SIZE/sizeof(byte))*4)
|
||||
|
||||
// Choose a start address close to the top of the Flash 1 memory space
|
||||
#define FLASH_START ((byte *)(IFLASH1_ADDR + IFLASH1_SIZE - DATA_LENGTH))
|
||||
|
||||
// FLASH_DEBUG can be enabled to get debugging information displayed.
|
||||
//#define FLASH_DEBUG
|
||||
|
||||
#ifdef FLASH_DEBUG
|
||||
#define _FLASH_DEBUG(x) Serial.print(x);
|
||||
#else
|
||||
#define _FLASH_DEBUG(x)
|
||||
#endif
|
||||
|
||||
// DueFlash is the main namespace for flash functions
|
||||
namespace DueFlashStorage {
|
||||
void init();
|
||||
|
||||
// write() writes the specified amount of data into flash.
|
||||
// flashStart is the address in memory where the write should start
|
||||
// data is a pointer to the data to be written
|
||||
// dataLength is length of data in bytes
|
||||
|
||||
byte read(uint32_t address);
|
||||
void read(uint32_t address, void *data, uint32_t dataLength);
|
||||
bool write(uint32_t address, byte value);
|
||||
bool write(uint32_t address, const void *data, uint32_t dataLength);
|
||||
};
|
||||
|
||||
#endif
|
340
Flash/efc.cpp
Normal file
340
Flash/efc.cpp
Normal file
|
@ -0,0 +1,340 @@
|
|||
/**
|
||||
* \file
|
||||
*
|
||||
* \brief Enhanced Embedded Flash Controller (EEFC) driver for SAM.
|
||||
*
|
||||
* Copyright (c) 2011-2012 Atmel Corporation. All rights reserved.
|
||||
*
|
||||
* \asf_license_start
|
||||
*
|
||||
* \page License
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright notice,
|
||||
* this list of conditions and the following disclaimer.
|
||||
*
|
||||
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
||||
* this list of conditions and the following disclaimer in the documentation
|
||||
* and/or other materials provided with the distribution.
|
||||
*
|
||||
* 3. The name of Atmel may not be used to endorse or promote products derived
|
||||
* from this software without specific prior written permission.
|
||||
*
|
||||
* 4. This software may only be redistributed and used in connection with an
|
||||
* Atmel microcontroller product.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
|
||||
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
||||
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
|
||||
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
|
||||
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
* \asf_license_stop
|
||||
*
|
||||
*/
|
||||
|
||||
#include "efc.h"
|
||||
|
||||
/// @cond 0
|
||||
/**INDENT-OFF**/
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
/**INDENT-ON**/
|
||||
/// @endcond
|
||||
|
||||
/**
|
||||
* \defgroup sam_drivers_efc_group Enhanced Embedded Flash Controller (EEFC)
|
||||
*
|
||||
* The Enhanced Embedded Flash Controller ensures the interface of the Flash
|
||||
* block with the 32-bit internal bus.
|
||||
*
|
||||
* @{
|
||||
*/
|
||||
|
||||
/* Address definition for read operation */
|
||||
# define READ_BUFF_ADDR0 IFLASH0_ADDR
|
||||
# define READ_BUFF_ADDR1 IFLASH1_ADDR
|
||||
|
||||
/* Flash Writing Protection Key */
|
||||
#define FWP_KEY 0x5Au
|
||||
|
||||
#if (SAM4S || SAM4E)
|
||||
#define EEFC_FCR_FCMD(value) \
|
||||
((EEFC_FCR_FCMD_Msk & ((value) << EEFC_FCR_FCMD_Pos)))
|
||||
#define EEFC_ERROR_FLAGS (EEFC_FSR_FLOCKE | EEFC_FSR_FCMDE | EEFC_FSR_FLERR)
|
||||
#else
|
||||
#define EEFC_ERROR_FLAGS (EEFC_FSR_FLOCKE | EEFC_FSR_FCMDE)
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* Local function declaration.
|
||||
* Because they are RAM functions, they need 'extern' declaration.
|
||||
*/
|
||||
extern void efc_write_fmr(Efc *p_efc, uint32_t ul_fmr);
|
||||
extern uint32_t efc_perform_fcr(Efc *p_efc, uint32_t ul_fcr);
|
||||
|
||||
/**
|
||||
* \brief Initialize the EFC controller.
|
||||
*
|
||||
* \param ul_access_mode 0 for 128-bit, EEFC_FMR_FAM for 64-bit.
|
||||
* \param ul_fws The number of wait states in cycle (no shift).
|
||||
*
|
||||
* \return 0 if successful.
|
||||
*/
|
||||
uint32_t efc_init(Efc *p_efc, uint32_t ul_access_mode, uint32_t ul_fws)
|
||||
{
|
||||
efc_write_fmr(p_efc, ul_access_mode | EEFC_FMR_FWS(ul_fws));
|
||||
return EFC_RC_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Enable the flash ready interrupt.
|
||||
*
|
||||
* \param p_efc Pointer to an EFC instance.
|
||||
*/
|
||||
void efc_enable_frdy_interrupt(Efc *p_efc)
|
||||
{
|
||||
uint32_t ul_fmr = p_efc->EEFC_FMR;
|
||||
|
||||
efc_write_fmr(p_efc, ul_fmr | EEFC_FMR_FRDY);
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Disable the flash ready interrupt.
|
||||
*
|
||||
* \param p_efc Pointer to an EFC instance.
|
||||
*/
|
||||
void efc_disable_frdy_interrupt(Efc *p_efc)
|
||||
{
|
||||
uint32_t ul_fmr = p_efc->EEFC_FMR;
|
||||
|
||||
efc_write_fmr(p_efc, ul_fmr & (~EEFC_FMR_FRDY));
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Set flash access mode.
|
||||
*
|
||||
* \param p_efc Pointer to an EFC instance.
|
||||
* \param ul_mode 0 for 128-bit, EEFC_FMR_FAM for 64-bit.
|
||||
*/
|
||||
void efc_set_flash_access_mode(Efc *p_efc, uint32_t ul_mode)
|
||||
{
|
||||
uint32_t ul_fmr = p_efc->EEFC_FMR & (~EEFC_FMR_FAM);
|
||||
|
||||
efc_write_fmr(p_efc, ul_fmr | ul_mode);
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Get flash access mode.
|
||||
*
|
||||
* \param p_efc Pointer to an EFC instance.
|
||||
*
|
||||
* \return 0 for 128-bit or EEFC_FMR_FAM for 64-bit.
|
||||
*/
|
||||
uint32_t efc_get_flash_access_mode(Efc *p_efc)
|
||||
{
|
||||
return (p_efc->EEFC_FMR & EEFC_FMR_FAM);
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Set flash wait state.
|
||||
*
|
||||
* \param p_efc Pointer to an EFC instance.
|
||||
* \param ul_fws The number of wait states in cycle (no shift).
|
||||
*/
|
||||
void efc_set_wait_state(Efc *p_efc, uint32_t ul_fws)
|
||||
{
|
||||
uint32_t ul_fmr = p_efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk);
|
||||
|
||||
efc_write_fmr(p_efc, ul_fmr | EEFC_FMR_FWS(ul_fws));
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Get flash wait state.
|
||||
*
|
||||
* \param p_efc Pointer to an EFC instance.
|
||||
*
|
||||
* \return The number of wait states in cycle (no shift).
|
||||
*/
|
||||
uint32_t efc_get_wait_state(Efc *p_efc)
|
||||
{
|
||||
return ((p_efc->EEFC_FMR & EEFC_FMR_FWS_Msk) >> EEFC_FMR_FWS_Pos);
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Perform the given command and wait until its completion (or an error).
|
||||
*
|
||||
* \note Unique ID commands are not supported, use efc_read_unique_id.
|
||||
*
|
||||
* \param p_efc Pointer to an EFC instance.
|
||||
* \param ul_command Command to perform.
|
||||
* \param ul_argument Optional command argument.
|
||||
*
|
||||
* \note This function will automatically choose to use IAP function.
|
||||
*
|
||||
* \return 0 if successful, otherwise returns an error code.
|
||||
*/
|
||||
uint32_t efc_perform_command(Efc *p_efc, uint32_t ul_command,
|
||||
uint32_t ul_argument)
|
||||
{
|
||||
/* Unique ID commands are not supported. */
|
||||
if (ul_command == EFC_FCMD_STUI || ul_command == EFC_FCMD_SPUI) {
|
||||
return EFC_RC_NOT_SUPPORT;
|
||||
}
|
||||
|
||||
/* Use IAP function with 2 parameters in ROM. */
|
||||
static uint32_t(*iap_perform_command) (uint32_t, uint32_t);
|
||||
uint32_t ul_efc_nb = (p_efc == EFC0) ? 0 : 1;
|
||||
|
||||
iap_perform_command =
|
||||
(uint32_t(*)(uint32_t, uint32_t))
|
||||
*((uint32_t *) CHIP_FLASH_IAP_ADDRESS);
|
||||
iap_perform_command(ul_efc_nb,
|
||||
EEFC_FCR_FKEY(FWP_KEY) | EEFC_FCR_FARG(ul_argument) |
|
||||
EEFC_FCR_FCMD(ul_command));
|
||||
return (p_efc->EEFC_FSR & EEFC_ERROR_FLAGS);
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Get the current status of the EEFC.
|
||||
*
|
||||
* \note This function clears the value of some status bits (FLOCKE, FCMDE).
|
||||
*
|
||||
* \param p_efc Pointer to an EFC instance.
|
||||
*
|
||||
* \return The current status.
|
||||
*/
|
||||
uint32_t efc_get_status(Efc *p_efc)
|
||||
{
|
||||
return p_efc->EEFC_FSR;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Get the result of the last executed command.
|
||||
*
|
||||
* \param p_efc Pointer to an EFC instance.
|
||||
*
|
||||
* \return The result of the last executed command.
|
||||
*/
|
||||
uint32_t efc_get_result(Efc *p_efc)
|
||||
{
|
||||
return p_efc->EEFC_FRR;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Perform read sequence. Supported sequences are read Unique ID and
|
||||
* read User Signature
|
||||
*
|
||||
* \param p_efc Pointer to an EFC instance.
|
||||
* \param ul_cmd_st Start command to perform.
|
||||
* \param ul_cmd_sp Stop command to perform.
|
||||
* \param p_ul_buf Pointer to an data buffer.
|
||||
* \param ul_size Buffer size.
|
||||
*
|
||||
* \return 0 if successful, otherwise returns an error code.
|
||||
*/
|
||||
RAMFUNC
|
||||
uint32_t efc_perform_read_sequence(Efc *p_efc,
|
||||
uint32_t ul_cmd_st, uint32_t ul_cmd_sp,
|
||||
uint32_t *p_ul_buf, uint32_t ul_size)
|
||||
{
|
||||
volatile uint32_t ul_status;
|
||||
uint32_t ul_cnt;
|
||||
|
||||
uint32_t *p_ul_data =
|
||||
(uint32_t *) ((p_efc == EFC0) ?
|
||||
READ_BUFF_ADDR0 : READ_BUFF_ADDR1);
|
||||
|
||||
if (p_ul_buf == NULL) {
|
||||
return EFC_RC_INVALID;
|
||||
}
|
||||
|
||||
p_efc->EEFC_FMR |= (0x1u << 16);
|
||||
|
||||
/* Send the Start Read command */
|
||||
|
||||
p_efc->EEFC_FCR = EEFC_FCR_FKEY(FWP_KEY) | EEFC_FCR_FARG(0)
|
||||
| EEFC_FCR_FCMD(ul_cmd_st);
|
||||
/* Wait for the FRDY bit in the Flash Programming Status Register
|
||||
* (EEFC_FSR) falls.
|
||||
*/
|
||||
do {
|
||||
ul_status = p_efc->EEFC_FSR;
|
||||
} while ((ul_status & EEFC_FSR_FRDY) == EEFC_FSR_FRDY);
|
||||
|
||||
/* The data is located in the first address of the Flash
|
||||
* memory mapping.
|
||||
*/
|
||||
for (ul_cnt = 0; ul_cnt < ul_size; ul_cnt++) {
|
||||
p_ul_buf[ul_cnt] = p_ul_data[ul_cnt];
|
||||
}
|
||||
|
||||
/* To stop the read mode */
|
||||
p_efc->EEFC_FCR =
|
||||
EEFC_FCR_FKEY(FWP_KEY) | EEFC_FCR_FARG(0) |
|
||||
EEFC_FCR_FCMD(ul_cmd_sp);
|
||||
/* Wait for the FRDY bit in the Flash Programming Status Register (EEFC_FSR)
|
||||
* rises.
|
||||
*/
|
||||
do {
|
||||
ul_status = p_efc->EEFC_FSR;
|
||||
} while ((ul_status & EEFC_FSR_FRDY) != EEFC_FSR_FRDY);
|
||||
|
||||
p_efc->EEFC_FMR &= ~(0x1u << 16);
|
||||
|
||||
return EFC_RC_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Set mode register.
|
||||
*
|
||||
* \param p_efc Pointer to an EFC instance.
|
||||
* \param ul_fmr Value of mode register
|
||||
*/
|
||||
RAMFUNC
|
||||
void efc_write_fmr(Efc *p_efc, uint32_t ul_fmr)
|
||||
{
|
||||
p_efc->EEFC_FMR = ul_fmr;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Perform command.
|
||||
*
|
||||
* \param p_efc Pointer to an EFC instance.
|
||||
* \param ul_fcr Flash command.
|
||||
*
|
||||
* \return The current status.
|
||||
*/
|
||||
RAMFUNC
|
||||
uint32_t efc_perform_fcr(Efc *p_efc, uint32_t ul_fcr)
|
||||
{
|
||||
volatile uint32_t ul_status;
|
||||
|
||||
p_efc->EEFC_FCR = ul_fcr;
|
||||
do {
|
||||
ul_status = p_efc->EEFC_FSR;
|
||||
} while ((ul_status & EEFC_FSR_FRDY) != EEFC_FSR_FRDY);
|
||||
|
||||
return (ul_status & EEFC_ERROR_FLAGS);
|
||||
}
|
||||
|
||||
//@}
|
||||
|
||||
/// @cond 0
|
||||
/**INDENT-OFF**/
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
/**INDENT-ON**/
|
||||
/// @endcond
|
139
Flash/efc.h
Normal file
139
Flash/efc.h
Normal file
|
@ -0,0 +1,139 @@
|
|||
/**
|
||||
* \file
|
||||
*
|
||||
* \brief Embedded Flash Controller (EFC) driver for SAM.
|
||||
*
|
||||
* Copyright (c) 2011-2012 Atmel Corporation. All rights reserved.
|
||||
*
|
||||
* \asf_license_start
|
||||
*
|
||||
* \page License
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright notice,
|
||||
* this list of conditions and the following disclaimer.
|
||||
*
|
||||
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
||||
* this list of conditions and the following disclaimer in the documentation
|
||||
* and/or other materials provided with the distribution.
|
||||
*
|
||||
* 3. The name of Atmel may not be used to endorse or promote products derived
|
||||
* from this software without specific prior written permission.
|
||||
*
|
||||
* 4. This software may only be redistributed and used in connection with an
|
||||
* Atmel microcontroller product.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
|
||||
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
||||
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
|
||||
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
|
||||
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
* \asf_license_stop
|
||||
*
|
||||
*/
|
||||
|
||||
#ifndef EFC_H_INCLUDED
|
||||
#define EFC_H_INCLUDED
|
||||
|
||||
#include <Arduino.h>
|
||||
#include <inttypes.h>
|
||||
|
||||
#define SAM3XA
|
||||
#define RAMFUNC __attribute__ ((section(".ramfunc")))
|
||||
|
||||
/// @cond 0
|
||||
/**INDENT-OFF**/
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
/**INDENT-ON**/
|
||||
/// @endcond
|
||||
|
||||
/*! \name EFC return codes */
|
||||
//! @{
|
||||
typedef enum efc_rc {
|
||||
EFC_RC_OK = 0, //!< Operation OK
|
||||
EFC_RC_YES = 0, //!< Yes
|
||||
EFC_RC_NO = 1, //!< No
|
||||
EFC_RC_ERROR = 1, //!< General error
|
||||
EFC_RC_INVALID, //!< Invalid argument input
|
||||
EFC_RC_NOT_SUPPORT = 0xFFFFFFFF //!< Operation is not supported
|
||||
} efc_rc_t;
|
||||
//! @}
|
||||
|
||||
/*! \name EFC command */
|
||||
//! @{
|
||||
#define EFC_FCMD_GETD 0x00 //!< Get Flash Descriptor
|
||||
#define EFC_FCMD_WP 0x01 //!< Write page
|
||||
#define EFC_FCMD_WPL 0x02 //!< Write page and lock
|
||||
#define EFC_FCMD_EWP 0x03 //!< Erase page and write page
|
||||
#define EFC_FCMD_EWPL 0x04 //!< Erase page and write page then lock
|
||||
#define EFC_FCMD_EA 0x05 //!< Erase all
|
||||
#if (SAM3SD8)
|
||||
#define EFC_FCMD_EPL 0x06 //!< Erase plane
|
||||
#endif
|
||||
#if (SAM4S || SAM4E)
|
||||
#define EFC_FCMD_EPA 0x07 //!< Erase pages
|
||||
#endif
|
||||
#define EFC_FCMD_SLB 0x08 //!< Set Lock Bit
|
||||
#define EFC_FCMD_CLB 0x09 //!< Clear Lock Bit
|
||||
#define EFC_FCMD_GLB 0x0A //!< Get Lock Bit
|
||||
#define EFC_FCMD_SGPB 0x0B //!< Set GPNVM Bit
|
||||
#define EFC_FCMD_CGPB 0x0C //!< Clear GPNVM Bit
|
||||
#define EFC_FCMD_GGPB 0x0D //!< Get GPNVM Bit
|
||||
#define EFC_FCMD_STUI 0x0E //!< Start unique ID
|
||||
#define EFC_FCMD_SPUI 0x0F //!< Stop unique ID
|
||||
#if (!SAM3U && !SAM3SD8 && !SAM3S8)
|
||||
#define EFC_FCMD_GCALB 0x10 //!< Get CALIB Bit
|
||||
#endif
|
||||
#if (SAM4S || SAM4E)
|
||||
#define EFC_FCMD_ES 0x11 //!< Erase sector
|
||||
#define EFC_FCMD_WUS 0x12 //!< Write user signature
|
||||
#define EFC_FCMD_EUS 0x13 //!< Erase user signature
|
||||
#define EFC_FCMD_STUS 0x14 //!< Start read user signature
|
||||
#define EFC_FCMD_SPUS 0x15 //!< Stop read user signature
|
||||
#endif
|
||||
//! @}
|
||||
|
||||
/*! The IAP function entry address */
|
||||
#define CHIP_FLASH_IAP_ADDRESS (IROM_ADDR + 8)
|
||||
|
||||
/*! \name EFC access mode */
|
||||
//! @{
|
||||
#define EFC_ACCESS_MODE_128 0
|
||||
#define EFC_ACCESS_MODE_64 EEFC_FMR_FAM
|
||||
//! @}
|
||||
|
||||
uint32_t efc_init(Efc *p_efc, uint32_t ul_access_mode, uint32_t ul_fws);
|
||||
void efc_enable_frdy_interrupt(Efc *p_efc);
|
||||
void efc_disable_frdy_interrupt(Efc *p_efc);
|
||||
void efc_set_flash_access_mode(Efc *p_efc, uint32_t ul_mode);
|
||||
uint32_t efc_get_flash_access_mode(Efc *p_efc);
|
||||
void efc_set_wait_state(Efc *p_efc, uint32_t ul_fws);
|
||||
uint32_t efc_get_wait_state(Efc *p_efc);
|
||||
uint32_t efc_perform_command(Efc *p_efc, uint32_t ul_command,
|
||||
uint32_t ul_argument);
|
||||
uint32_t efc_get_status(Efc *p_efc);
|
||||
uint32_t efc_get_result(Efc *p_efc);
|
||||
uint32_t efc_perform_read_sequence(Efc *p_efc,
|
||||
uint32_t ul_cmd_st, uint32_t ul_cmd_sp,
|
||||
uint32_t *p_ul_buf, uint32_t ul_size);
|
||||
|
||||
/// @cond 0
|
||||
/**INDENT-OFF**/
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
/**INDENT-ON**/
|
||||
/// @endcond
|
||||
|
||||
#endif /* EFC_H_INCLUDED */
|
916
Flash/flash_efc.cpp
Normal file
916
Flash/flash_efc.cpp
Normal file
|
@ -0,0 +1,916 @@
|
|||
/**
|
||||
* \file
|
||||
*
|
||||
* \brief Embedded Flash service for SAM.
|
||||
*
|
||||
* Copyright (c) 2011-2013 Atmel Corporation. All rights reserved.
|
||||
*
|
||||
* \asf_license_start
|
||||
*
|
||||
* \page License
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright notice,
|
||||
* this list of conditions and the following disclaimer.
|
||||
*
|
||||
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
||||
* this list of conditions and the following disclaimer in the documentation
|
||||
* and/or other materials provided with the distribution.
|
||||
*
|
||||
* 3. The name of Atmel may not be used to endorse or promote products derived
|
||||
* from this software without specific prior written permission.
|
||||
*
|
||||
* 4. This software may only be redistributed and used in connection with an
|
||||
* Atmel microcontroller product.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
|
||||
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
||||
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
|
||||
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
|
||||
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
* \asf_license_stop
|
||||
*
|
||||
*/
|
||||
|
||||
#include <string.h>
|
||||
#include <assert.h>
|
||||
#include "flash_efc.h"
|
||||
|
||||
/// @cond 0
|
||||
/**INDENT-OFF**/
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
/**INDENT-ON**/
|
||||
/// @endcond
|
||||
|
||||
/**
|
||||
* \defgroup sam_services_flash_efc_group Embedded Flash Service
|
||||
*
|
||||
* The Embedded Flash service provides functions for internal flash operations.
|
||||
*
|
||||
* @{
|
||||
*/
|
||||
|
||||
#if SAM4E
|
||||
/* User signature size */
|
||||
# define FLASH_USER_SIG_SIZE (512)
|
||||
#endif
|
||||
|
||||
#if SAM4S
|
||||
/* Internal Flash Controller 0. */
|
||||
# define EFC EFC0
|
||||
/* User signature size */
|
||||
# define FLASH_USER_SIG_SIZE (512)
|
||||
/* Internal Flash 0 base address. */
|
||||
# define IFLASH_ADDR IFLASH0_ADDR
|
||||
/* Internal flash page size. */
|
||||
# define IFLASH_PAGE_SIZE IFLASH0_PAGE_SIZE
|
||||
/* Internal flash lock region size. */
|
||||
# define IFLASH_LOCK_REGION_SIZE IFLASH0_LOCK_REGION_SIZE
|
||||
#endif
|
||||
|
||||
/* Internal Flash Controller 0. */
|
||||
# define EFC EFC0
|
||||
/* The max GPNVM number. */
|
||||
# define GPNVM_NUM_MAX 3
|
||||
/* Internal Flash 0 base address. */
|
||||
# define IFLASH_ADDR IFLASH0_ADDR
|
||||
/* Internal flash page size. */
|
||||
# define IFLASH_PAGE_SIZE IFLASH0_PAGE_SIZE
|
||||
/* Internal flash lock region size. */
|
||||
# define IFLASH_LOCK_REGION_SIZE IFLASH0_LOCK_REGION_SIZE
|
||||
|
||||
/* Flash page buffer for alignment */
|
||||
static uint32_t gs_ul_page_buffer[IFLASH_PAGE_SIZE / sizeof(uint32_t)];
|
||||
|
||||
/**
|
||||
* \brief Translate the given flash address to page and offset values.
|
||||
* \note pus_page and pus_offset must not be null in order to store the
|
||||
* corresponding values.
|
||||
*
|
||||
* \param pp_efc Pointer to an EFC pointer.
|
||||
* \param ul_addr Address to translate.
|
||||
* \param pus_page The first page accessed.
|
||||
* \param pus_offset Byte offset in the first page.
|
||||
*/
|
||||
static void translate_address(Efc **pp_efc, uint32_t ul_addr,
|
||||
uint16_t *pus_page, uint16_t *pus_offset)
|
||||
{
|
||||
Efc *p_efc;
|
||||
uint16_t us_page;
|
||||
uint16_t us_offset;
|
||||
|
||||
if (ul_addr >= IFLASH1_ADDR) {
|
||||
p_efc = EFC1;
|
||||
us_page = (ul_addr - IFLASH1_ADDR) / IFLASH1_PAGE_SIZE;
|
||||
us_offset = (ul_addr - IFLASH1_ADDR) % IFLASH1_PAGE_SIZE;
|
||||
} else {
|
||||
p_efc = EFC0;
|
||||
us_page = (ul_addr - IFLASH0_ADDR) / IFLASH0_PAGE_SIZE;
|
||||
us_offset = (ul_addr - IFLASH0_ADDR) % IFLASH0_PAGE_SIZE;
|
||||
}
|
||||
|
||||
/* Store values */
|
||||
if (pp_efc) {
|
||||
*pp_efc = p_efc;
|
||||
}
|
||||
|
||||
if (pus_page) {
|
||||
*pus_page = us_page;
|
||||
}
|
||||
|
||||
if (pus_offset) {
|
||||
*pus_offset = us_offset;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Compute the address of a flash by the given page and offset.
|
||||
*
|
||||
* \param p_efc Pointer to an EFC instance.
|
||||
* \param us_page Page number.
|
||||
* \param us_offset Byte offset inside page.
|
||||
* \param pul_addr Computed address (optional).
|
||||
*/
|
||||
static void compute_address(Efc *p_efc, uint16_t us_page, uint16_t us_offset,
|
||||
uint32_t *pul_addr)
|
||||
{
|
||||
uint32_t ul_addr;
|
||||
|
||||
/* Dual bank flash */
|
||||
#ifdef EFC1
|
||||
/* Compute address */
|
||||
ul_addr = (p_efc == EFC0) ?
|
||||
IFLASH0_ADDR + us_page * IFLASH_PAGE_SIZE + us_offset :
|
||||
IFLASH1_ADDR + us_page * IFLASH_PAGE_SIZE + us_offset;
|
||||
|
||||
/* One bank flash */
|
||||
#else
|
||||
/* avoid Cppcheck Warning */
|
||||
UNUSED(p_efc);
|
||||
/* Compute address */
|
||||
ul_addr = IFLASH_ADDR + us_page * IFLASH_PAGE_SIZE + us_offset;
|
||||
#endif
|
||||
|
||||
/* Store result */
|
||||
if (pul_addr != NULL) {
|
||||
*pul_addr = ul_addr;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Compute the lock range associated with the given address range.
|
||||
*
|
||||
* \param ul_start Start address of lock range.
|
||||
* \param ul_end End address of lock range.
|
||||
* \param pul_actual_start Actual start address of lock range.
|
||||
* \param pul_actual_end Actual end address of lock range.
|
||||
*/
|
||||
static void compute_lock_range(uint32_t ul_start, uint32_t ul_end,
|
||||
uint32_t *pul_actual_start, uint32_t *pul_actual_end)
|
||||
{
|
||||
uint32_t ul_actual_start, ul_actual_end;
|
||||
|
||||
ul_actual_start = ul_start - (ul_start % IFLASH_LOCK_REGION_SIZE);
|
||||
ul_actual_end = ul_end - (ul_end % IFLASH_LOCK_REGION_SIZE) +
|
||||
IFLASH_LOCK_REGION_SIZE - 1;
|
||||
|
||||
if (pul_actual_start) {
|
||||
*pul_actual_start = ul_actual_start;
|
||||
}
|
||||
|
||||
if (pul_actual_end) {
|
||||
*pul_actual_end = ul_actual_end;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Initialize the flash service.
|
||||
*
|
||||
* \param ul_mode FLASH_ACCESS_MODE_128 or FLASH_ACCESS_MODE_64.
|
||||
* \param ul_fws The number of wait states in cycle (no shift).
|
||||
*
|
||||
* \return 0 if successful; otherwise returns an error code.
|
||||
*/
|
||||
uint32_t flash_init(uint32_t ul_mode, uint32_t ul_fws)
|
||||
{
|
||||
efc_init(EFC, ul_mode, ul_fws);
|
||||
|
||||
#ifdef EFC1
|
||||
efc_init(EFC1, ul_mode, ul_fws);
|
||||
#endif
|
||||
|
||||
return FLASH_RC_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Set flash wait state.
|
||||
*
|
||||
* \param ul_address Flash bank start address.
|
||||
* \param ul_fws The number of wait states in cycle (no shift).
|
||||
*
|
||||
* \return 0 if successful; otherwise returns an error code.
|
||||
*/
|
||||
uint32_t flash_set_wait_state(uint32_t ul_address, uint32_t ul_fws)
|
||||
{
|
||||
Efc *p_efc;
|
||||
|
||||
translate_address(&p_efc, ul_address, NULL, NULL);
|
||||
efc_set_wait_state(p_efc, ul_fws);
|
||||
|
||||
return FLASH_RC_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Set flash wait state.
|
||||
*
|
||||
* \param ul_address Flash bank start address.
|
||||
* \param ul_fws The number of wait states in cycle (no shift).
|
||||
*
|
||||
* \return 0 if successful; otherwise returns an error code.
|
||||
*/
|
||||
uint32_t flash_set_wait_state_adaptively(uint32_t ul_address)
|
||||
{
|
||||
Efc *p_efc;
|
||||
uint32_t clock = SystemCoreClock;
|
||||
|
||||
translate_address(&p_efc, ul_address, NULL, NULL);
|
||||
|
||||
/* Set FWS for embedded Flash access according to operating frequency */
|
||||
if (clock < CHIP_FREQ_FWS_0) {
|
||||
efc_set_wait_state(p_efc, 0);
|
||||
} else if (clock < CHIP_FREQ_FWS_1) {
|
||||
efc_set_wait_state(p_efc, 1);
|
||||
} else if (clock < CHIP_FREQ_FWS_2) {
|
||||
efc_set_wait_state(p_efc, 2);
|
||||
} else if (clock < CHIP_FREQ_FWS_3) {
|
||||
efc_set_wait_state(p_efc, 3);
|
||||
} else {
|
||||
efc_set_wait_state(p_efc, 4);
|
||||
}
|
||||
return FLASH_RC_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Get flash wait state.
|
||||
*
|
||||
* \param ul_address Flash bank start address.
|
||||
*
|
||||
* \return The number of wait states in cycle (no shift).
|
||||
*/
|
||||
uint32_t flash_get_wait_state(uint32_t ul_address)
|
||||
{
|
||||
Efc *p_efc;
|
||||
|
||||
translate_address(&p_efc, ul_address, NULL, NULL);
|
||||
return efc_get_wait_state(p_efc);
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Get flash descriptor.
|
||||
*
|
||||
* \param ul_address Flash bank start address.
|
||||
* \param pul_flash_descriptor Pointer to a data buffer to store flash descriptor.
|
||||
* \param ul_size Data buffer size in DWORD.
|
||||
*
|
||||
* \return The actual descriptor length.
|
||||
*/
|
||||
uint32_t flash_get_descriptor(uint32_t ul_address,
|
||||
uint32_t *pul_flash_descriptor, uint32_t ul_size)
|
||||
{
|
||||
Efc *p_efc;
|
||||
uint32_t ul_tmp;
|
||||
uint32_t ul_cnt;
|
||||
|
||||
translate_address(&p_efc, ul_address, NULL, NULL);
|
||||
|
||||
/* Command fails */
|
||||
if (FLASH_RC_OK != efc_perform_command(p_efc, EFC_FCMD_GETD, 0)) {
|
||||
return 0;
|
||||
} else {
|
||||
/* Read until no result */
|
||||
for (ul_cnt = 0;; ul_cnt++) {
|
||||
ul_tmp = efc_get_result(p_efc);
|
||||
if ((ul_size > ul_cnt) && (ul_tmp != 0)) {
|
||||
*pul_flash_descriptor++ = ul_tmp;
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return ul_cnt;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Get flash total page count for the specified bank.
|
||||
*
|
||||
* \note The flash descriptor must be fetched from flash_get_descriptor
|
||||
* function first.
|
||||
*
|
||||
* \param pul_flash_descriptor Pointer to a flash descriptor.
|
||||
*
|
||||
* \return The flash total page count.
|
||||
*/
|
||||
uint32_t flash_get_page_count(const uint32_t *pul_flash_descriptor)
|
||||
{
|
||||
return (pul_flash_descriptor[1] / pul_flash_descriptor[2]);
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Get flash page count per region (plane) for the specified bank.
|
||||
*
|
||||
* \note The flash descriptor must be fetched from flash_get_descriptor
|
||||
* function first.
|
||||
*
|
||||
* \param pul_flash_descriptor Pointer to a flash descriptor.
|
||||
*
|
||||
* \return The flash page count per region (plane).
|
||||
*/
|
||||
uint32_t flash_get_page_count_per_region(const uint32_t *pul_flash_descriptor)
|
||||
{
|
||||
return (pul_flash_descriptor[4] / pul_flash_descriptor[2]);
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Get flash region (plane) count for the specified bank.
|
||||
*
|
||||
* \note The flash descriptor must be fetched from flash_get_descriptor
|
||||
* function first.
|
||||
*
|
||||
* \param pul_flash_descriptor Pointer to a flash descriptor.
|
||||
*
|
||||
* \return The flash region (plane) count.
|
||||
*/
|
||||
uint32_t flash_get_region_count(const uint32_t *pul_flash_descriptor)
|
||||
{
|
||||
return (pul_flash_descriptor[3]);
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Erase the entire flash.
|
||||
*
|
||||
* \note Only the flash bank including ul_address will be erased. If there are
|
||||
* two flash banks, we need to call this function twice with each bank start
|
||||
* address.
|
||||
*
|
||||
* \param ul_address Flash bank start address.
|
||||
*
|
||||
* \return 0 if successful; otherwise returns an error code.
|
||||
*/
|
||||
uint32_t flash_erase_all(uint32_t ul_address)
|
||||
{
|
||||
Efc *p_efc;
|
||||
|
||||
translate_address(&p_efc, ul_address, NULL, NULL);
|
||||
|
||||
if (EFC_RC_OK != efc_perform_command(p_efc, EFC_FCMD_EA, 0)) {
|
||||
return FLASH_RC_ERROR;
|
||||
}
|
||||
|
||||
return FLASH_RC_OK;
|
||||
}
|
||||
|
||||
#if SAM3SD8
|
||||
/**
|
||||
* \brief Erase the flash by plane.
|
||||
*
|
||||
* \param ul_address Flash plane start address.
|
||||
*
|
||||
* \note Erase plane command needs a page number parameter which belongs to
|
||||
* the plane to be erased.
|
||||
*
|
||||
* \return 0 if successful; otherwise returns an error code.
|
||||
*/
|
||||
uint32_t flash_erase_plane(uint32_t ul_address)
|
||||
{
|
||||
Efc *p_efc;
|
||||
uint16_t us_page;
|
||||
|
||||
translate_address(&p_efc, ul_address, &us_page, NULL);
|
||||
|
||||
if (EFC_RC_OK != efc_perform_command(p_efc, EFC_FCMD_EPL, us_page)) {
|
||||
return FLASH_RC_ERROR;
|
||||
}
|
||||
|
||||
return FLASH_RC_OK;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if (SAM4S || SAM4E)
|
||||
/**
|
||||
* \brief Erase the specified pages of flash.
|
||||
*
|
||||
* \param ul_address Flash bank start address.
|
||||
*
|
||||
* \return 0 if successful; otherwise returns an error code.
|
||||
*/
|
||||
uint32_t flash_erase_page(uint32_t ul_address, uint8_t uc_page_num)
|
||||
{
|
||||
Efc *p_efc;
|
||||
uint16_t us_page;
|
||||
|
||||
if (uc_page_num >= IFLASH_ERASE_PAGES_INVALID) {
|
||||
return FLASH_RC_INVALID;
|
||||
}
|
||||
|
||||
if (ul_address & (IFLASH_PAGE_SIZE - 1)) {
|
||||
return FLASH_RC_INVALID;
|
||||
}
|
||||
|
||||
translate_address(&p_efc, ul_address, &us_page, NULL);
|
||||
|
||||
if (EFC_RC_OK != efc_perform_command(p_efc, EFC_FCMD_EPA,
|
||||
(us_page | uc_page_num))) {
|
||||
return FLASH_RC_ERROR;
|
||||
}
|
||||
|
||||
return FLASH_RC_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Erase the flash sector.
|
||||
*
|
||||
* \note Erase sector command needs a page number parameter which belongs to
|
||||
* the sector to be erased.
|
||||
*
|
||||
* \param ul_address Flash sector start address.
|
||||
*
|
||||
* \return 0 if successful; otherwise returns an error code.
|
||||
*/
|
||||
uint32_t flash_erase_sector(uint32_t ul_address)
|
||||
{
|
||||
Efc *p_efc;
|
||||
uint16_t us_page;
|
||||
|
||||
translate_address(&p_efc, ul_address, &us_page, NULL);
|
||||
|
||||
if (EFC_RC_OK != efc_perform_command(p_efc, EFC_FCMD_ES, us_page)) {
|
||||
return FLASH_RC_ERROR;
|
||||
}
|
||||
|
||||
return FLASH_RC_OK;
|
||||
}
|
||||
#endif
|
||||
|
||||
/**
|
||||
* \brief Write a data buffer on flash.
|
||||
*
|
||||
* \note This function works in polling mode, and thus only returns when the
|
||||
* data has been effectively written.
|
||||
* \note For dual bank flash, this function doesn't support cross write from
|
||||
* bank 0 to bank 1. In this case, flash_write must be called twice (ie for
|
||||
* each bank).
|
||||
*
|
||||
* \param ul_address Write address.
|
||||
* \param p_buffer Data buffer.
|
||||
* \param ul_size Size of data buffer in bytes.
|
||||
* \param ul_erase_flag Flag to set if erase first.
|
||||
*
|
||||
* \return 0 if successful, otherwise returns an error code.
|
||||
*/
|
||||
uint32_t flash_write(uint32_t ul_address, const void *p_buffer,
|
||||
uint32_t ul_size, uint32_t ul_erase_flag)
|
||||
{
|
||||
Efc *p_efc;
|
||||
uint32_t ul_fws_temp;
|
||||
uint16_t us_page;
|
||||
uint16_t us_offset;
|
||||
uint32_t writeSize;
|
||||
uint32_t ul_page_addr;
|
||||
uint16_t us_padding;
|
||||
uint32_t ul_error;
|
||||
uint32_t ul_idx;
|
||||
uint32_t *p_aligned_dest;
|
||||
uint8_t *puc_page_buffer = (uint8_t *) gs_ul_page_buffer;
|
||||
|
||||
translate_address(&p_efc, ul_address, &us_page, &us_offset);
|
||||
|
||||
/* According to the errata, set the wait state value to 6. */
|
||||
ul_fws_temp = efc_get_wait_state(p_efc);
|
||||
efc_set_wait_state(p_efc, 6);
|
||||
|
||||
/* Write all pages */
|
||||
while (ul_size > 0) {
|
||||
/* Copy data in temporary buffer to avoid alignment problems. */
|
||||
writeSize = Min((uint32_t) IFLASH_PAGE_SIZE - us_offset,
|
||||
ul_size);
|
||||
compute_address(p_efc, us_page, 0, &ul_page_addr);
|
||||
us_padding = IFLASH_PAGE_SIZE - us_offset - writeSize;
|
||||
|
||||
/* Pre-buffer data */
|
||||
memcpy(puc_page_buffer, (void *)ul_page_addr, us_offset);
|
||||
|
||||
/* Buffer data */
|
||||
memcpy(puc_page_buffer + us_offset, p_buffer, writeSize);
|
||||
|
||||
/* Post-buffer data */
|
||||
memcpy(puc_page_buffer + us_offset + writeSize,
|
||||
(void *)(ul_page_addr + us_offset + writeSize),
|
||||
us_padding);
|
||||
|
||||
/* Write page.
|
||||
* Writing 8-bit and 16-bit data is not allowed and may lead to
|
||||
* unpredictable data corruption.
|
||||
*/
|
||||
p_aligned_dest = (uint32_t *) ul_page_addr;
|
||||
for (ul_idx = 0; ul_idx < (IFLASH_PAGE_SIZE / sizeof(uint32_t));
|
||||
++ul_idx) {
|
||||
*p_aligned_dest++ = gs_ul_page_buffer[ul_idx];
|
||||
}
|
||||
|
||||
if (ul_erase_flag) {
|
||||
ul_error = efc_perform_command(p_efc, EFC_FCMD_EWP,
|
||||
us_page);
|
||||
} else {
|
||||
ul_error = efc_perform_command(p_efc, EFC_FCMD_WP,
|
||||
us_page);
|
||||
}
|
||||
|
||||
if (ul_error) {
|
||||
return ul_error;
|
||||
}
|
||||
|
||||
/* Progression */
|
||||
p_buffer = (void *)((uint32_t) p_buffer + writeSize);
|
||||
ul_size -= writeSize;
|
||||
us_page++;
|
||||
us_offset = 0;
|
||||
}
|
||||
|
||||
/* According to the errata, restore the wait state value. */
|
||||
efc_set_wait_state(p_efc, ul_fws_temp);
|
||||
|
||||
return FLASH_RC_OK;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* \brief Lock all the regions in the given address range. The actual lock
|
||||
* range is reported through two output parameters.
|
||||
*
|
||||
* \param ul_start Start address of lock range.
|
||||
* \param ul_end End address of lock range.
|
||||
* \param pul_actual_start Start address of the actual lock range (optional).
|
||||
* \param pul_actual_end End address of the actual lock range (optional).
|
||||
*
|
||||
* \return 0 if successful, otherwise returns an error code.
|
||||
*/
|
||||
uint32_t flash_lock(uint32_t ul_start, uint32_t ul_end,
|
||||
uint32_t *pul_actual_start, uint32_t *pul_actual_end)
|
||||
{
|
||||
Efc *p_efc;
|
||||
uint32_t ul_actual_start, ul_actual_end;
|
||||
uint16_t us_start_page, us_end_page;
|
||||
uint32_t ul_error;
|
||||
uint16_t us_num_pages_in_region =
|
||||
IFLASH_LOCK_REGION_SIZE / IFLASH_PAGE_SIZE;
|
||||
|
||||
/* Compute actual lock range and store it */
|
||||
compute_lock_range(ul_start, ul_end, &ul_actual_start, &ul_actual_end);
|
||||
|
||||
if (pul_actual_start != NULL) {
|
||||
*pul_actual_start = ul_actual_start;
|
||||
}
|
||||
|
||||
if (pul_actual_end != NULL) {
|
||||
*pul_actual_end = ul_actual_end;
|
||||
}
|
||||
|
||||
/* Compute page numbers */
|
||||
translate_address(&p_efc, ul_actual_start, &us_start_page, 0);
|
||||
translate_address(0, ul_actual_end, &us_end_page, 0);
|
||||
|
||||
/* Lock all pages */
|
||||
while (us_start_page < us_end_page) {
|
||||
ul_error = efc_perform_command(p_efc, EFC_FCMD_SLB, us_start_page);
|
||||
|
||||
if (ul_error) {
|
||||
return ul_error;
|
||||
}
|
||||
us_start_page += us_num_pages_in_region;
|
||||
}
|
||||
|
||||
return FLASH_RC_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Unlock all the regions in the given address range. The actual unlock
|
||||
* range is reported through two output parameters.
|
||||
*
|
||||
* \param ul_start Start address of unlock range.
|
||||
* \param ul_end End address of unlock range.
|
||||
* \param pul_actual_start Start address of the actual unlock range (optional).
|
||||
* \param pul_actual_end End address of the actual unlock range (optional).
|
||||
*
|
||||
* \return 0 if successful, otherwise returns an error code.
|
||||
*/
|
||||
uint32_t flash_unlock(uint32_t ul_start, uint32_t ul_end,
|
||||
uint32_t *pul_actual_start, uint32_t *pul_actual_end)
|
||||
{
|
||||
Efc *p_efc;
|
||||
uint32_t ul_actual_start, ul_actual_end;
|
||||
uint16_t us_start_page, us_end_page;
|
||||
uint32_t ul_error;
|
||||
uint16_t us_num_pages_in_region =
|
||||
IFLASH_LOCK_REGION_SIZE / IFLASH_PAGE_SIZE;
|
||||
|
||||
/* Compute actual unlock range and store it */
|
||||
compute_lock_range(ul_start, ul_end, &ul_actual_start, &ul_actual_end);
|
||||
if (pul_actual_start != NULL) {
|
||||
*pul_actual_start = ul_actual_start;
|
||||
}
|
||||
if (pul_actual_end != NULL) {
|
||||
*pul_actual_end = ul_actual_end;
|
||||
}
|
||||
|
||||
/* Compute page numbers */
|
||||
translate_address(&p_efc, ul_actual_start, &us_start_page, 0);
|
||||
translate_address(0, ul_actual_end, &us_end_page, 0);
|
||||
|
||||
/* Unlock all pages */
|
||||
while (us_start_page < us_end_page) {
|
||||
ul_error = efc_perform_command(p_efc, EFC_FCMD_CLB,
|
||||
us_start_page);
|
||||
if (ul_error) {
|
||||
return ul_error;
|
||||
}
|
||||
us_start_page += us_num_pages_in_region;
|
||||
}
|
||||
|
||||
return FLASH_RC_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Get the number of locked regions inside the given address range.
|
||||
*
|
||||
* \param ul_start Start address of range
|
||||
* \param ul_end End address of range.
|
||||
*
|
||||
* \return The number of locked regions inside the given address range.
|
||||
*/
|
||||
uint32_t flash_is_locked(uint32_t ul_start, uint32_t ul_end)
|
||||
{
|
||||
Efc *p_efc;
|
||||
uint16_t us_start_page, us_end_page;
|
||||
uint8_t uc_start_region, uc_end_region;
|
||||
uint16_t us_num_pages_in_region;
|
||||
uint32_t ul_status;
|
||||
uint32_t ul_error;
|
||||
uint32_t ul_num_locked_regions = 0;
|
||||
uint32_t ul_count = 0;
|
||||
uint32_t ul_bit = 0;
|
||||
|
||||
/* Compute page numbers */
|
||||
translate_address(&p_efc, ul_start, &us_start_page, 0);
|
||||
translate_address(0, ul_end, &us_end_page, 0);
|
||||
|
||||
/* Compute region numbers */
|
||||
us_num_pages_in_region = IFLASH_LOCK_REGION_SIZE / IFLASH_PAGE_SIZE;
|
||||
uc_start_region = us_start_page / us_num_pages_in_region;
|
||||
uc_end_region = us_end_page / us_num_pages_in_region;
|
||||
|
||||
/* Retrieve lock status */
|
||||
ul_error = efc_perform_command(p_efc, EFC_FCMD_GLB, 0);
|
||||
|
||||
/* Skip unrequested regions (if necessary) */
|
||||
ul_status = efc_get_result(p_efc);
|
||||
while (!(ul_count <= uc_start_region &&
|
||||
uc_start_region < (ul_count + 32))) {
|
||||
ul_status = efc_get_result(p_efc);
|
||||
ul_count += 32;
|
||||
}
|
||||
|
||||
/* Check status of each involved region */
|
||||
ul_bit = uc_start_region - ul_count;
|
||||
|
||||
/* Number of region to check (must be > 0) */
|
||||
ul_count = uc_end_region - uc_start_region + 1;
|
||||
|
||||
while (ul_count > 0) {
|
||||
if (ul_status & (1 << (ul_bit))) {
|
||||
ul_num_locked_regions++;
|
||||
}
|
||||
|
||||
ul_count -= 1;
|
||||
ul_bit += 1;
|
||||
if (ul_bit == 32) {
|
||||
ul_status = efc_get_result(p_efc);
|
||||
ul_bit = 0;
|
||||
}
|
||||
}
|
||||
|
||||
return ul_num_locked_regions;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Set the given GPNVM bit.
|
||||
*
|
||||
* \param ul_gpnvm GPNVM bit index.
|
||||
*
|
||||
* \return 0 if successful; otherwise returns an error code.
|
||||
*/
|
||||
uint32_t flash_set_gpnvm(uint32_t ul_gpnvm)
|
||||
{
|
||||
if (ul_gpnvm >= GPNVM_NUM_MAX) {
|
||||
return FLASH_RC_INVALID;
|
||||
}
|
||||
|
||||
if (FLASH_RC_YES == flash_is_gpnvm_set(ul_gpnvm)) {
|
||||
return FLASH_RC_OK;
|
||||
}
|
||||
|
||||
if (EFC_RC_OK == efc_perform_command(EFC, EFC_FCMD_SGPB, ul_gpnvm)) {
|
||||
return FLASH_RC_OK;
|
||||
}
|
||||
|
||||
return FLASH_RC_ERROR;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Clear the given GPNVM bit.
|
||||
*
|
||||
* \param ul_gpnvm GPNVM bit index.
|
||||
*
|
||||
* \return 0 if successful; otherwise returns an error code.
|
||||
*/
|
||||
uint32_t flash_clear_gpnvm(uint32_t ul_gpnvm)
|
||||
{
|
||||
if (ul_gpnvm >= GPNVM_NUM_MAX) {
|
||||
return FLASH_RC_INVALID;
|
||||
}
|
||||
|
||||
if (FLASH_RC_NO == flash_is_gpnvm_set(ul_gpnvm)) {
|
||||
return FLASH_RC_OK;
|
||||
}
|
||||
|
||||
if (EFC_RC_OK == efc_perform_command(EFC, EFC_FCMD_CGPB, ul_gpnvm)) {
|
||||
return FLASH_RC_OK;
|
||||
}
|
||||
|
||||
return FLASH_RC_ERROR;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Check if the given GPNVM bit is set or not.
|
||||
*
|
||||
* \param ul_gpnvm GPNVM bit index.
|
||||
*
|
||||
* \retval 1 If the given GPNVM bit is currently set.
|
||||
* \retval 0 If the given GPNVM bit is currently cleared.
|
||||
*/
|
||||
uint32_t flash_is_gpnvm_set(uint32_t ul_gpnvm)
|
||||
{
|
||||
uint32_t ul_gpnvm_bits;
|
||||
|
||||
if (ul_gpnvm >= GPNVM_NUM_MAX) {
|
||||
return FLASH_RC_INVALID;
|
||||
}
|
||||
|
||||
if (EFC_RC_OK != efc_perform_command(EFC, EFC_FCMD_GGPB, 0)) {
|
||||
return FLASH_RC_ERROR;
|
||||
}
|
||||
|
||||
ul_gpnvm_bits = efc_get_result(EFC);
|
||||
if (ul_gpnvm_bits & (1 << ul_gpnvm)) {
|
||||
return FLASH_RC_YES;
|
||||
}
|
||||
|
||||
return FLASH_RC_NO;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Set security bit.
|
||||
*
|
||||
* \return 0 if successful; otherwise returns an error code.
|
||||
*/
|
||||
uint32_t flash_enable_security_bit(void)
|
||||
{
|
||||
return flash_set_gpnvm(0);
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Check if the security bit is set or not.
|
||||
*
|
||||
* \retval 1 If the security bit is currently set.
|
||||
* \retval 0 If the security bit is currently cleared.
|
||||
*/
|
||||
uint32_t flash_is_security_bit_enabled(void)
|
||||
{
|
||||
return flash_is_gpnvm_set(0);
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Read the flash unique ID.
|
||||
*
|
||||
* \param pul_data Pointer to a data buffer to store 128-bit unique ID.
|
||||
* \param ul_size Data buffer size in DWORD.
|
||||
*
|
||||
* \return 0 if successful; otherwise returns an error code.
|
||||
*/
|
||||
uint32_t flash_read_unique_id(uint32_t *pul_data, uint32_t ul_size)
|
||||
{
|
||||
uint32_t uid_buf[4];
|
||||
uint32_t ul_idx;
|
||||
|
||||
if (FLASH_RC_OK != efc_perform_read_sequence(EFC, EFC_FCMD_STUI,
|
||||
EFC_FCMD_SPUI, uid_buf, 4)) {
|
||||
return FLASH_RC_ERROR;
|
||||
}
|
||||
|
||||
if (ul_size > 4) {
|
||||
/* Only 4 dword to store unique ID */
|
||||
ul_size = 4;
|
||||
}
|
||||
|
||||
for (ul_idx = 0; ul_idx < ul_size; ul_idx++) {
|
||||
pul_data[ul_idx] = uid_buf[ul_idx];
|
||||
}
|
||||
|
||||
return FLASH_RC_OK;
|
||||
}
|
||||
|
||||
#if (SAM4S || SAM4E)
|
||||
/**
|
||||
* \brief Read the flash user signature.
|
||||
*
|
||||
* \param p_data Pointer to a data buffer to store 512 bytes of user signature.
|
||||
* \param ul_size Data buffer size.
|
||||
*
|
||||
* \return 0 if successful; otherwise returns an error code.
|
||||
*/
|
||||
uint32_t flash_read_user_signature(uint32_t *p_data, uint32_t ul_size)
|
||||
{
|
||||
if (ul_size > FLASH_USER_SIG_SIZE) {
|
||||
/* Only 512 byte to store unique ID */
|
||||
ul_size = FLASH_USER_SIG_SIZE;
|
||||
}
|
||||
|
||||
/* Send the read user signature commands */
|
||||
if (FLASH_RC_OK != efc_perform_read_sequence(EFC, EFC_FCMD_STUS,
|
||||
EFC_FCMD_SPUS, p_data, ul_size)) {
|
||||
return FLASH_RC_ERROR;
|
||||
}
|
||||
|
||||
return FLASH_RC_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Write the flash user signature.
|
||||
*
|
||||
* \param ul_address Write address.
|
||||
* \param p_data Pointer to a data buffer to store 512 bytes of user signature.
|
||||
* \param ul_size Data buffer size.
|
||||
*
|
||||
* \return 0 if successful; otherwise returns an error code.
|
||||
*/
|
||||
uint32_t flash_write_user_signature(uint32_t ul_address, const void *p_buffer,
|
||||
uint32_t ul_size)
|
||||
{
|
||||
/* The user signature should be no longer than 512 bytes */
|
||||
if (ul_size > FLASH_USER_SIG_SIZE) {
|
||||
return FLASH_RC_INVALID;
|
||||
}
|
||||
|
||||
/* Write the full page */
|
||||
flash_write(ul_address, p_buffer, ul_size, 0);
|
||||
|
||||
/* Send the write signature command */
|
||||
if (FLASH_RC_OK != efc_perform_command(EFC, EFC_FCMD_WUS, 0)) {
|
||||
return FLASH_RC_ERROR;
|
||||
}
|
||||
|
||||
return FLASH_RC_OK;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Erase the flash user signature.
|
||||
*
|
||||
* \return 0 if successful; otherwise returns an error code.
|
||||
*/
|
||||
uint32_t flash_erase_user_signature(void)
|
||||
{
|
||||
/* Perform the erase user signature command */
|
||||
return efc_perform_command(EFC, EFC_FCMD_EUS, 0);
|
||||
}
|
||||
#endif
|
||||
|
||||
//@}
|
||||
|
||||
/// @cond 0
|
||||
/**INDENT-OFF**/
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
/**INDENT-ON**/
|
||||
/// @endcond
|
151
Flash/flash_efc.h
Normal file
151
Flash/flash_efc.h
Normal file
|
@ -0,0 +1,151 @@
|
|||
/**
|
||||
* \file
|
||||
*
|
||||
* \brief Embedded Flash service for SAM.
|
||||
*
|
||||
* Copyright (c) 2011-2013 Atmel Corporation. All rights reserved.
|
||||
*
|
||||
* \asf_license_start
|
||||
*
|
||||
* \page License
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright notice,
|
||||
* this list of conditions and the following disclaimer.
|
||||
*
|
||||
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
||||
* this list of conditions and the following disclaimer in the documentation
|
||||
* and/or other materials provided with the distribution.
|
||||
*
|
||||
* 3. The name of Atmel may not be used to endorse or promote products derived
|
||||
* from this software without specific prior written permission.
|
||||
*
|
||||
* 4. This software may only be redistributed and used in connection with an
|
||||
* Atmel microcontroller product.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
|
||||
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
||||
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
|
||||
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
|
||||
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
* \asf_license_stop
|
||||
*
|
||||
*/
|
||||
|
||||
#ifndef FLASH_H_INCLUDED
|
||||
#define FLASH_H_INCLUDED
|
||||
|
||||
#include <Arduino.h>
|
||||
#include "efc.h"
|
||||
|
||||
/* Internal Flash 0 base address. */
|
||||
#define IFLASH_ADDR IFLASH0_ADDR
|
||||
/* Internal flash page size. */
|
||||
#define IFLASH_PAGE_SIZE IFLASH0_PAGE_SIZE
|
||||
|
||||
/* Last page start address. */
|
||||
#define IFLASH_LAST_PAGE_ADDRESS (IFLASH1_ADDR + IFLASH1_SIZE - IFLASH1_PAGE_SIZE)
|
||||
|
||||
/// @cond 0
|
||||
/**INDENT-OFF**/
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
/**INDENT-ON**/
|
||||
/// @endcond
|
||||
|
||||
/*! \name Flash driver return codes */
|
||||
//! @{
|
||||
typedef enum flash_rc {
|
||||
FLASH_RC_OK = 0, //!< Operation OK
|
||||
FLASH_RC_YES = 0, //!< Yes
|
||||
FLASH_RC_NO = 1, //!< No
|
||||
FLASH_RC_ERROR = 0x10, //!< General error
|
||||
FLASH_RC_INVALID, //!< Invalid argument input
|
||||
FLASH_RC_NOT_SUPPORT = 0xFFFFFFFF //!< Operation is not supported
|
||||
} flash_rc_t;
|
||||
//! @}
|
||||
|
||||
/*! \name Flash erase page num in FARG[1:0]
|
||||
\note The erase page commands should be cautiouly used as EPA4/EPA32 will not
|
||||
take effect according to errata and EPA8/EPA16 must module 8/16 page addresses.*/
|
||||
//! @{
|
||||
typedef enum flash_farg_page_num {
|
||||
/* 4 of pages to be erased with EPA command*/
|
||||
IFLASH_ERASE_PAGES_4=0,
|
||||
/* 8 of pages to be erased with EPA command*/
|
||||
IFLASH_ERASE_PAGES_8,
|
||||
/* 16 of pages to be erased with EPA command*/
|
||||
IFLASH_ERASE_PAGES_16,
|
||||
/* 32 of pages to be erased with EPA command*/
|
||||
IFLASH_ERASE_PAGES_32,
|
||||
/* Parameter is not support */
|
||||
IFLASH_ERASE_PAGES_INVALID,
|
||||
}flash_farg_page_num_t;
|
||||
//! @}
|
||||
|
||||
/*! \name Flash access mode */
|
||||
//! @{
|
||||
#define FLASH_ACCESS_MODE_128 EFC_ACCESS_MODE_128
|
||||
#define FLASH_ACCESS_MODE_64 EFC_ACCESS_MODE_64
|
||||
//! @}
|
||||
|
||||
uint32_t flash_init(uint32_t ul_mode, uint32_t ul_fws);
|
||||
uint32_t flash_set_wait_state(uint32_t ul_address, uint32_t ul_fws);
|
||||
uint32_t flash_set_wait_state_adaptively(uint32_t ul_address);
|
||||
uint32_t flash_get_wait_state(uint32_t ul_address);
|
||||
uint32_t flash_get_descriptor(uint32_t ul_address,
|
||||
uint32_t *pul_flash_descriptor, uint32_t ul_size);
|
||||
uint32_t flash_get_page_count(const uint32_t *pul_flash_descriptor);
|
||||
uint32_t flash_get_page_count_per_region(const uint32_t *pul_flash_descriptor);
|
||||
uint32_t flash_get_region_count(const uint32_t *pul_flash_descriptor);
|
||||
uint32_t flash_erase_all(uint32_t ul_address);
|
||||
|
||||
#if SAM3SD8
|
||||
uint32_t flash_erase_plane(uint32_t ul_address);
|
||||
#endif
|
||||
|
||||
#if (SAM4S || SAM4E)
|
||||
uint32_t flash_erase_page(uint32_t ul_address, uint8_t uc_page_num);
|
||||
uint32_t flash_erase_sector(uint32_t ul_address);
|
||||
#endif
|
||||
|
||||
uint32_t flash_write(uint32_t ul_address, const void *p_buffer,
|
||||
uint32_t ul_size, uint32_t ul_erase_flag);
|
||||
uint32_t flash_lock(uint32_t ul_start, uint32_t ul_end,
|
||||
uint32_t *pul_actual_start, uint32_t *pul_actual_end);
|
||||
uint32_t flash_unlock(uint32_t ul_start, uint32_t ul_end,
|
||||
uint32_t *pul_actual_start, uint32_t *pul_actual_end);
|
||||
uint32_t flash_is_locked(uint32_t ul_start, uint32_t ul_end);
|
||||
uint32_t flash_set_gpnvm(uint32_t ul_gpnvm);
|
||||
uint32_t flash_clear_gpnvm(uint32_t ul_gpnvm);
|
||||
uint32_t flash_is_gpnvm_set(uint32_t ul_gpnvm);
|
||||
uint32_t flash_enable_security_bit(void);
|
||||
uint32_t flash_is_security_bit_enabled(void);
|
||||
uint32_t flash_read_unique_id(uint32_t *pul_data, uint32_t ul_size);
|
||||
|
||||
#if (SAM4S || SAM4E)
|
||||
uint32_t flash_read_user_signature(uint32_t *p_data, uint32_t ul_size);
|
||||
uint32_t flash_write_user_signature(uint32_t ul_address, const void *p_buffer,
|
||||
uint32_t ul_size);
|
||||
uint32_t flash_erase_user_signature(void);
|
||||
#endif
|
||||
|
||||
/// @cond 0
|
||||
/**INDENT-OFF**/
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
/**INDENT-ON**/
|
||||
/// @endcond
|
||||
|
||||
#endif /* FLASH_H_INCLUDED */
|
2388
GCodes.cpp
2388
GCodes.cpp
File diff suppressed because it is too large
Load diff
11
GCodes.h
11
GCodes.h
|
@ -27,6 +27,11 @@ Licence: GPL
|
|||
|
||||
#define GCODE_LETTERS { 'X', 'Y', 'Z', 'E', 'F' } // The drives and feedrate in a GCode
|
||||
|
||||
// Enumeration to define the mode in which we check endstops
|
||||
|
||||
enum EndstopMode { noEndstopCheck, checkApproachingEndstop, checkAtEndstop};
|
||||
|
||||
|
||||
// Small class to hold an individual GCode and provide functions to allow it to be parsed
|
||||
|
||||
class GCodeBuffer
|
||||
|
@ -72,7 +77,7 @@ class GCodes
|
|||
void Init();
|
||||
void Exit();
|
||||
bool RunConfigurationGCodes();
|
||||
bool ReadMove(float* m, bool& ce);
|
||||
bool ReadMove(float* m, EndstopMode& ce);
|
||||
void QueueFileToPrint(const char* fileName);
|
||||
void DeleteFile(const char* fileName);
|
||||
bool GetProbeCoordinates(int count, float& x, float& y, float& z);
|
||||
|
@ -86,7 +91,7 @@ class GCodes
|
|||
|
||||
void doFilePrint(GCodeBuffer* gb);
|
||||
bool AllMovesAreFinishedAndMoveBufferIsLoaded();
|
||||
bool DoCannedCycleMove(bool ce);
|
||||
bool DoCannedCycleMove(EndstopMode ce);
|
||||
bool DoFileCannedCycles(const char* fileName);
|
||||
bool FileCannedCyclesReturn();
|
||||
bool ActOnGcode(GCodeBuffer* gb);
|
||||
|
@ -126,7 +131,7 @@ class GCodes
|
|||
GCodeBuffer* cannedCycleGCode;
|
||||
bool moveAvailable;
|
||||
float moveBuffer[DRIVES+1]; // Last is feed rate
|
||||
bool checkEndStops;
|
||||
EndstopMode checkEndStops;
|
||||
bool drivesRelative; // All except X, Y and Z
|
||||
bool axesRelative; // X, Y and Z
|
||||
bool drivesRelativeStack[STACK];
|
||||
|
|
58
Move.cpp
58
Move.cpp
|
@ -94,7 +94,7 @@ void Move::Init()
|
|||
liveCoordinates[i] = 0.0;
|
||||
}
|
||||
|
||||
lastMove->Init(ep, platform->HomeFeedRate(Z_AXIS), platform->InstantDv(Z_AXIS), false, zMove); // Typically Z is the slowest Axis
|
||||
lastMove->Init(ep, platform->HomeFeedRate(Z_AXIS), platform->InstantDv(Z_AXIS), noEndstopCheck, zMove); // Typically Z is the slowest Axis
|
||||
lastMove->Release();
|
||||
liveCoordinates[DRIVES] = platform->HomeFeedRate(Z_AXIS);
|
||||
|
||||
|
@ -167,13 +167,11 @@ void Move::Spin()
|
|||
// If there's a G Code move available, add it to the look-ahead
|
||||
// ring for processing.
|
||||
|
||||
bool checkEndStopsOnNextMove;
|
||||
EndstopMode checkEndStopsOnNextMove;
|
||||
if(gCodes->ReadMove(nextMove, checkEndStopsOnNextMove))
|
||||
{
|
||||
Transform(nextMove);
|
||||
|
||||
currentFeedrate = nextMove[DRIVES]; // Might be G1 with just an F field
|
||||
|
||||
for(int8_t drive = 0; drive < DRIVES; drive++)
|
||||
nextMachineEndPoints[drive] = LookAhead::EndPointToMachine(drive, nextMove[drive]);
|
||||
|
||||
|
@ -183,12 +181,12 @@ void Move::Spin()
|
|||
|
||||
if(movementType == noMove)
|
||||
{
|
||||
currentFeedrate = nextMove[DRIVES]; // Might be G1 with just an F field
|
||||
platform->ClassReport("Move", longWait);
|
||||
return;
|
||||
}
|
||||
|
||||
// Real move - record its feedrate with it, not here.
|
||||
|
||||
currentFeedrate = -1.0;
|
||||
|
||||
// Promote minimum feedrates
|
||||
|
@ -294,7 +292,7 @@ bool Move::GetCurrentState(float m[])
|
|||
// for the bed's plane, which means that a move is MAINLY and XY move, or MAINLY a Z move. It
|
||||
// is the main type of move that is returned.
|
||||
|
||||
int8_t Move::GetMovementType(long p0[], long p1[])
|
||||
int8_t Move::GetMovementType(const long p0[], const long p1[]) const
|
||||
{
|
||||
int8_t result = noMove;
|
||||
long dxy = 0;
|
||||
|
@ -568,7 +566,7 @@ void Move::Interrupt()
|
|||
}
|
||||
|
||||
|
||||
bool Move::LookAheadRingAdd(long ep[], float feedRate, float vv, bool ce, int8_t mt)
|
||||
bool Move::LookAheadRingAdd(const long ep[], float feedRate, float vv, EndstopMode ce, int8_t mt)
|
||||
{
|
||||
if(LookAheadRingFull())
|
||||
return false;
|
||||
|
@ -898,9 +896,9 @@ MovementProfile DDA::Init(LookAhead* lookAhead, float& u, float& v)
|
|||
distance = 0.0; // X+Y+Z
|
||||
float eDistance = 0.0;
|
||||
float d;
|
||||
long* targetPosition = myLookAheadEntry->MachineEndPoints();
|
||||
const long* targetPosition = myLookAheadEntry->MachineEndPoints();
|
||||
v = myLookAheadEntry->V();
|
||||
long* positionNow = myLookAheadEntry->Previous()->MachineEndPoints();
|
||||
const long* positionNow = myLookAheadEntry->Previous()->MachineEndPoints();
|
||||
u = myLookAheadEntry->Previous()->V();
|
||||
checkEndStops = myLookAheadEntry->CheckEndStops();
|
||||
|
||||
|
@ -1004,10 +1002,17 @@ MovementProfile DDA::Init(LookAhead* lookAhead, float& u, float& v)
|
|||
|
||||
// If velocity requested is (almost) zero, set it to instantDv
|
||||
|
||||
if(v < instantDv) // Set change here?
|
||||
if(v < instantDv)
|
||||
{
|
||||
v = instantDv;
|
||||
result = change;
|
||||
v = instantDv;
|
||||
result = change;
|
||||
}
|
||||
|
||||
// u here may be zero if we recently hit an endstop, in which case we need to set to to instantDv
|
||||
if (u < instantDv)
|
||||
{
|
||||
u = instantDv;
|
||||
result = change;
|
||||
}
|
||||
|
||||
if(myLookAheadEntry->FeedRate() < instantDv)
|
||||
|
@ -1019,11 +1024,11 @@ MovementProfile DDA::Init(LookAhead* lookAhead, float& u, float& v)
|
|||
|
||||
velocity = u;
|
||||
|
||||
// Sanity check
|
||||
// Sanity check
|
||||
|
||||
if(velocity <= 0.0)
|
||||
{
|
||||
velocity = 1.0;
|
||||
velocity = 1.0;
|
||||
// if(reprap.Debug())
|
||||
// platform->Message(HOST_MESSAGE, "DDA.Init(): Zero or negative initial velocity!\n");
|
||||
}
|
||||
|
@ -1076,18 +1081,27 @@ void DDA::Step()
|
|||
|
||||
// Hit anything?
|
||||
|
||||
if(checkEndStops)
|
||||
if(checkEndStops != noEndstopCheck)
|
||||
{
|
||||
EndStopHit esh = platform->Stopped(drive);
|
||||
if(esh == lowHit)
|
||||
switch(platform->Stopped(drive))
|
||||
{
|
||||
case lowHit:
|
||||
move->HitLowStop(drive, myLookAheadEntry, this);
|
||||
active = false;
|
||||
}
|
||||
if(esh == highHit)
|
||||
{
|
||||
break;
|
||||
case highHit:
|
||||
move->HitHighStop(drive, myLookAheadEntry, this);
|
||||
active = false;
|
||||
break;
|
||||
case lowNear:
|
||||
if (checkEndStops == checkApproachingEndstop)
|
||||
{
|
||||
move->NearLowStop(drive, myLookAheadEntry, this);
|
||||
active = false;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1095,7 +1109,7 @@ void DDA::Step()
|
|||
|
||||
// May have hit a stop, so test active here
|
||||
|
||||
if(active)
|
||||
if(active)
|
||||
{
|
||||
if(axesMoving)
|
||||
timeStep = move->stepDistances[axesMoving]/velocity;
|
||||
|
@ -1140,7 +1154,7 @@ LookAhead::LookAhead(Move* m, Platform* p, LookAhead* n)
|
|||
next = n;
|
||||
}
|
||||
|
||||
void LookAhead::Init(long ep[], float f, float vv, bool ce, int8_t mt)
|
||||
void LookAhead::Init(const long ep[], float f, float vv, EndstopMode ce, int8_t mt)
|
||||
{
|
||||
v = vv;
|
||||
movementType = mt;
|
||||
|
|
114
Move.h
114
Move.h
|
@ -70,22 +70,22 @@ public:
|
|||
|
||||
protected:
|
||||
LookAhead(Move* m, Platform* p, LookAhead* n);
|
||||
void Init(long ep[], float feedRate, float vv, bool ce, int8_t mt);
|
||||
void Init(const long ep[], float feedRate, float vv, EndstopMode ce, int8_t mt);
|
||||
LookAhead* Next();
|
||||
LookAhead* Previous();
|
||||
long* MachineEndPoints();
|
||||
const long* MachineEndPoints() const;
|
||||
float MachineToEndPoint(int8_t drive);
|
||||
static float MachineToEndPoint(int8_t drive, long coord);
|
||||
static long EndPointToMachine(int8_t drive, float coord);
|
||||
int8_t GetMovementType();
|
||||
float FeedRate();
|
||||
float V();
|
||||
int8_t GetMovementType() const;
|
||||
float FeedRate() const;
|
||||
float V() const;
|
||||
void SetV(float vv);
|
||||
void SetFeedRate(float f);
|
||||
int8_t Processed();
|
||||
int8_t Processed() const;
|
||||
void SetProcessed(MovementState ms);
|
||||
void SetDriveCoordinateAndZeroEndSpeed(float a, int8_t drive);
|
||||
bool CheckEndStops();
|
||||
EndstopMode CheckEndStops() const;
|
||||
void Release();
|
||||
|
||||
private:
|
||||
|
@ -97,7 +97,7 @@ private:
|
|||
long endPoint[DRIVES+1]; // Should never use the +1, but safety first
|
||||
int8_t movementType;
|
||||
float Cosine();
|
||||
bool checkEndStops;
|
||||
EndstopMode checkEndStops;
|
||||
float cosine;
|
||||
float v; // The feedrate we can actually do
|
||||
float feedRate; // The requested feedrate
|
||||
|
@ -118,9 +118,9 @@ protected:
|
|||
MovementProfile Init(LookAhead* lookAhead, float& u, float& v);
|
||||
void Start(bool noTest);
|
||||
void Step();
|
||||
bool Active();
|
||||
bool Active() const;
|
||||
DDA* Next();
|
||||
float InstantDv();
|
||||
float InstantDv() const;
|
||||
|
||||
private:
|
||||
MovementProfile AccelerationCalculation(float& u, float& v, MovementProfile result);
|
||||
|
@ -135,7 +135,7 @@ private:
|
|||
bool directions[DRIVES];
|
||||
long totalSteps;
|
||||
long stepCount;
|
||||
bool checkEndStops;
|
||||
EndstopMode checkEndStops;
|
||||
float timeStep;
|
||||
float velocity;
|
||||
long stopAStep;
|
||||
|
@ -147,8 +147,6 @@ private:
|
|||
};
|
||||
|
||||
|
||||
|
||||
|
||||
class Move
|
||||
{
|
||||
public:
|
||||
|
@ -165,23 +163,24 @@ class Move
|
|||
void ResumeMoving();
|
||||
void DoLookAhead();
|
||||
void HitLowStop(int8_t drive, LookAhead* la, DDA* hitDDA);
|
||||
void NearLowStop(int8_t drive, LookAhead* la, DDA* hitDDA);
|
||||
void HitHighStop(int8_t drive, LookAhead* la, DDA* hitDDA);
|
||||
void SetPositions(float move[]);
|
||||
void SetLiveCoordinates(float coords[]);
|
||||
void SetXBedProbePoint(int index, float x);
|
||||
void SetYBedProbePoint(int index, float y);
|
||||
void SetZBedProbePoint(int index, float z);
|
||||
float xBedProbePoint(int index);
|
||||
float yBedProbePoint(int index);
|
||||
float zBedProbePoint(int index);
|
||||
int NumberOfProbePoints();
|
||||
int NumberOfXYProbePoints();
|
||||
bool AllProbeCoordinatesSet(int index);
|
||||
bool XYProbeCoordinatesSet(int index);
|
||||
float xBedProbePoint(int index) const;
|
||||
float yBedProbePoint(int index) const;
|
||||
float zBedProbePoint(int index) const;
|
||||
int NumberOfProbePoints() const;
|
||||
int NumberOfXYProbePoints() const;
|
||||
bool AllProbeCoordinatesSet(int index) const;
|
||||
bool XYProbeCoordinatesSet(int index) const;
|
||||
void SetZProbing(bool probing);
|
||||
void SetProbedBedEquation();
|
||||
float SecondDegreeTransformZ(float x, float y);
|
||||
float GetLastProbedZ();
|
||||
float SecondDegreeTransformZ(float x, float y) const;
|
||||
float GetLastProbedZ() const;
|
||||
void SetAxisCompensation(int8_t axis, float tangent);
|
||||
void SetIdentityTransform();
|
||||
void Transform(float move[]);
|
||||
|
@ -197,16 +196,16 @@ class Move
|
|||
|
||||
bool DDARingAdd(LookAhead* lookAhead);
|
||||
DDA* DDARingGet();
|
||||
bool DDARingEmpty();
|
||||
bool NoLiveMovement();
|
||||
bool DDARingFull();
|
||||
bool DDARingEmpty() const;
|
||||
bool NoLiveMovement() const;
|
||||
bool DDARingFull() const;
|
||||
bool GetDDARingLock();
|
||||
void ReleaseDDARingLock();
|
||||
bool LookAheadRingEmpty();
|
||||
bool LookAheadRingFull();
|
||||
bool LookAheadRingAdd(long ep[], float feedRate, float vv, bool ce, int8_t movementType);
|
||||
bool LookAheadRingEmpty() const;
|
||||
bool LookAheadRingFull() const;
|
||||
bool LookAheadRingAdd(const long ep[], float feedRate, float vv, EndstopMode ce, int8_t movementType);
|
||||
LookAhead* LookAheadRingGet();
|
||||
int8_t GetMovementType(long sp[], long ep[]);
|
||||
int8_t GetMovementType(const long sp[], const long ep[]) const;
|
||||
|
||||
float liveCoordinates[DRIVES + 1];
|
||||
|
||||
|
@ -263,7 +262,7 @@ inline void LookAhead::SetV(float vv)
|
|||
v = vv;
|
||||
}
|
||||
|
||||
inline float LookAhead::V()
|
||||
inline float LookAhead::V() const
|
||||
{
|
||||
return v;
|
||||
}
|
||||
|
@ -276,7 +275,7 @@ inline float LookAhead::MachineToEndPoint(int8_t drive)
|
|||
}
|
||||
|
||||
|
||||
inline float LookAhead::FeedRate()
|
||||
inline float LookAhead::FeedRate() const
|
||||
{
|
||||
return feedRate;
|
||||
}
|
||||
|
@ -286,7 +285,7 @@ inline void LookAhead::SetFeedRate(float f)
|
|||
feedRate = f;
|
||||
}
|
||||
|
||||
inline int8_t LookAhead::Processed()
|
||||
inline int8_t LookAhead::Processed() const
|
||||
{
|
||||
return processed;
|
||||
}
|
||||
|
@ -304,7 +303,7 @@ inline void LookAhead::Release()
|
|||
processed = released;
|
||||
}
|
||||
|
||||
inline bool LookAhead::CheckEndStops()
|
||||
inline EndstopMode LookAhead::CheckEndStops() const
|
||||
{
|
||||
return checkEndStops;
|
||||
}
|
||||
|
@ -316,19 +315,19 @@ inline void LookAhead::SetDriveCoordinateAndZeroEndSpeed(float a, int8_t drive)
|
|||
v = 0.0;
|
||||
}
|
||||
|
||||
inline long* LookAhead::MachineEndPoints()
|
||||
inline const long* LookAhead::MachineEndPoints() const
|
||||
{
|
||||
return endPoint;
|
||||
}
|
||||
|
||||
inline int8_t LookAhead::GetMovementType()
|
||||
inline int8_t LookAhead::GetMovementType() const
|
||||
{
|
||||
return movementType;
|
||||
}
|
||||
|
||||
//******************************************************************************************************
|
||||
|
||||
inline bool DDA::Active()
|
||||
inline bool DDA::Active() const
|
||||
{
|
||||
return active;
|
||||
}
|
||||
|
@ -338,7 +337,7 @@ inline DDA* DDA::Next()
|
|||
return next;
|
||||
}
|
||||
|
||||
inline float DDA::InstantDv()
|
||||
inline float DDA::InstantDv() const
|
||||
{
|
||||
return instantDv;
|
||||
}
|
||||
|
@ -346,12 +345,12 @@ inline float DDA::InstantDv()
|
|||
|
||||
//***************************************************************************************
|
||||
|
||||
inline bool Move::DDARingEmpty()
|
||||
inline bool Move::DDARingEmpty() const
|
||||
{
|
||||
return ddaRingGetPointer == ddaRingAddPointer;
|
||||
}
|
||||
|
||||
inline bool Move::NoLiveMovement()
|
||||
inline bool Move::NoLiveMovement() const
|
||||
{
|
||||
if(dda != NULL)
|
||||
return false;
|
||||
|
@ -360,19 +359,19 @@ inline bool Move::NoLiveMovement()
|
|||
|
||||
// Leave a gap of 2 as the last Get result may still be being processed
|
||||
|
||||
inline bool Move::DDARingFull()
|
||||
inline bool Move::DDARingFull() const
|
||||
{
|
||||
return ddaRingAddPointer->Next()->Next() == ddaRingGetPointer;
|
||||
}
|
||||
|
||||
inline bool Move::LookAheadRingEmpty()
|
||||
inline bool Move::LookAheadRingEmpty() const
|
||||
{
|
||||
return lookAheadRingCount == 0;
|
||||
}
|
||||
|
||||
// Leave a gap of 2 as the last Get result may still be being processed
|
||||
|
||||
inline bool Move::LookAheadRingFull()
|
||||
inline bool Move::LookAheadRingFull() const
|
||||
{
|
||||
if(!(lookAheadRingAddPointer->Processed() & released))
|
||||
return true;
|
||||
|
@ -459,17 +458,17 @@ inline void Move::SetZBedProbePoint(int index, float z)
|
|||
probePointSet[index] |= zSet;
|
||||
}
|
||||
|
||||
inline float Move::xBedProbePoint(int index)
|
||||
inline float Move::xBedProbePoint(int index) const
|
||||
{
|
||||
return xBedProbePoints[index];
|
||||
}
|
||||
|
||||
inline float Move::yBedProbePoint(int index)
|
||||
inline float Move::yBedProbePoint(int index) const
|
||||
{
|
||||
return yBedProbePoints[index];
|
||||
}
|
||||
|
||||
inline float Move::zBedProbePoint(int index)
|
||||
inline float Move::zBedProbePoint(int index) const
|
||||
{
|
||||
return zBedProbePoints[index];
|
||||
}
|
||||
|
@ -479,22 +478,22 @@ inline void Move::SetZProbing(bool probing)
|
|||
zProbing = probing;
|
||||
}
|
||||
|
||||
inline float Move::GetLastProbedZ()
|
||||
inline float Move::GetLastProbedZ() const
|
||||
{
|
||||
return lastZHit;
|
||||
}
|
||||
|
||||
inline bool Move::AllProbeCoordinatesSet(int index)
|
||||
inline bool Move::AllProbeCoordinatesSet(int index) const
|
||||
{
|
||||
return probePointSet[index] == (xSet | ySet | zSet);
|
||||
}
|
||||
|
||||
inline bool Move::XYProbeCoordinatesSet(int index)
|
||||
inline bool Move::XYProbeCoordinatesSet(int index) const
|
||||
{
|
||||
return (probePointSet[index] & xSet) && (probePointSet[index] & ySet);
|
||||
}
|
||||
|
||||
inline int Move::NumberOfProbePoints()
|
||||
inline int Move::NumberOfProbePoints() const
|
||||
{
|
||||
if(AllProbeCoordinatesSet(0) && AllProbeCoordinatesSet(1) && AllProbeCoordinatesSet(2))
|
||||
{
|
||||
|
@ -506,7 +505,7 @@ inline int Move::NumberOfProbePoints()
|
|||
return 0;
|
||||
}
|
||||
|
||||
inline int Move::NumberOfXYProbePoints()
|
||||
inline int Move::NumberOfXYProbePoints() const
|
||||
{
|
||||
if(XYProbeCoordinatesSet(0) && XYProbeCoordinatesSet(1) && XYProbeCoordinatesSet(2))
|
||||
{
|
||||
|
@ -530,7 +529,7 @@ inline int Move::NumberOfXYProbePoints()
|
|||
*
|
||||
* The values of x and y are transformed to put them in the interval [0, 1].
|
||||
*/
|
||||
inline float Move::SecondDegreeTransformZ(float x, float y)
|
||||
inline float Move::SecondDegreeTransformZ(float x, float y) const
|
||||
{
|
||||
x = (x - xBedProbePoints[0])*xRectangle;
|
||||
y = (y - yBedProbePoints[0])*yRectangle;
|
||||
|
@ -564,8 +563,12 @@ inline void Move::HitLowStop(int8_t drive, LookAhead* la, DDA* hitDDA)
|
|||
} else
|
||||
{
|
||||
// Executing G30, so set the current Z height to the value at which the end stop is triggered
|
||||
lastZHit = platform->ZProbeStopHeight();
|
||||
hitPoint = lastZHit;
|
||||
// Transform it first so that the height is correct in user coordinates
|
||||
float xyzPoint[3];
|
||||
LiveCoordinates(xyzPoint);
|
||||
xyzPoint[Z_AXIS] = lastZHit = platform->ZProbeStopHeight();
|
||||
Transform(xyzPoint);
|
||||
hitPoint = xyzPoint[Z_AXIS];
|
||||
}
|
||||
}
|
||||
la->SetDriveCoordinateAndZeroEndSpeed(hitPoint, drive);
|
||||
|
@ -576,6 +579,11 @@ inline void Move::HitHighStop(int8_t drive, LookAhead* la, DDA* hitDDA)
|
|||
la->SetDriveCoordinateAndZeroEndSpeed(platform->AxisLength(drive), drive);
|
||||
}
|
||||
|
||||
inline void Move::NearLowStop(int8_t drive, LookAhead* la, DDA* hitDDA)
|
||||
{
|
||||
la->SetDriveCoordinateAndZeroEndSpeed(1.0, drive); // say we are at 1mm
|
||||
}
|
||||
|
||||
inline float Move::ComputeCurrentCoordinate(int8_t drive, LookAhead* la, DDA* runningDDA)
|
||||
{
|
||||
float previous = la->Previous()->MachineToEndPoint(drive);
|
||||
|
|
290
Platform.cpp
290
Platform.cpp
|
@ -20,6 +20,7 @@ Licence: GPL
|
|||
****************************************************************************************************/
|
||||
|
||||
#include "RepRapFirmware.h"
|
||||
#include "DueFlashStorage.h"
|
||||
|
||||
#define WINDOWED_SEND_PACKETS (2)
|
||||
|
||||
|
@ -74,16 +75,29 @@ Platform::Platform()
|
|||
|
||||
void Platform::Init()
|
||||
{
|
||||
byte i;
|
||||
DueFlashStorage::init();
|
||||
DueFlashStorage::read(nvAddress, &nvData, sizeof(nvData));
|
||||
if (nvData.magic != FlashData::magicValue)
|
||||
{
|
||||
// Nonvolatile data has not been initialized since the firmware was last written, so set up default values
|
||||
nvData.compatibility = me;
|
||||
nvData.ipAddress = IP_ADDRESS;
|
||||
nvData.netMask = NET_MASK;
|
||||
nvData.gateWay = GATE_WAY;
|
||||
|
||||
compatibility = me;
|
||||
nvData.zProbeType = 0; // Default is to use the switch
|
||||
nvData.irZProbeParameters.Init(false);
|
||||
nvData.ultrasonicZProbeParameters.Init(true);
|
||||
|
||||
nvData.magic = FlashData::magicValue;
|
||||
}
|
||||
|
||||
line->Init();
|
||||
messageIndent = 0;
|
||||
|
||||
massStorage->Init();
|
||||
|
||||
for(i=0; i < MAX_FILES; i++)
|
||||
for(size_t i=0; i < MAX_FILES; i++)
|
||||
files[i]->Init();
|
||||
|
||||
fileStructureInitialised = true;
|
||||
|
@ -93,10 +107,6 @@ void Platform::Init()
|
|||
sysDir = SYS_DIR;
|
||||
configFile = CONFIG_FILE;
|
||||
|
||||
ipAddress = IP_ADDRESS;
|
||||
netMask = NET_MASK;
|
||||
gateWay = GATE_WAY;
|
||||
|
||||
// DRIVES
|
||||
|
||||
stepPins = STEP_PINS;
|
||||
|
@ -117,9 +127,6 @@ void Platform::Init()
|
|||
|
||||
zProbePin = Z_PROBE_PIN;
|
||||
zProbeModulationPin = Z_PROBE_MOD_PIN;
|
||||
zProbeType = 0; // Default is to use the switch
|
||||
zProbeADValue = Z_PROBE_AD_VALUE;
|
||||
zProbeStopHeight = Z_PROBE_STOP_HEIGHT;
|
||||
InitZProbe();
|
||||
|
||||
// AXES
|
||||
|
@ -153,7 +160,7 @@ void Platform::Init()
|
|||
gcodeDir = GCODE_DIR;
|
||||
tempDir = TEMP_DIR;
|
||||
|
||||
for(i = 0; i < DRIVES; i++)
|
||||
for(size_t i = 0; i < DRIVES; i++)
|
||||
{
|
||||
|
||||
if(stepPins[i] >= 0)
|
||||
|
@ -181,7 +188,7 @@ void Platform::Init()
|
|||
driveEnabled[i] = false;
|
||||
}
|
||||
|
||||
for(i = 0; i < AXES; i++)
|
||||
for(size_t i = 0; i < AXES; i++)
|
||||
{
|
||||
if(lowStopPins[i] >= 0)
|
||||
{
|
||||
|
@ -199,7 +206,7 @@ void Platform::Init()
|
|||
pinMode(heatOnPins[0], OUTPUT);
|
||||
thermistorInfRs[0] = ( thermistorInfRs[0]*exp(-thermistorBetas[0]/(25.0 - ABS_ZERO)) );
|
||||
|
||||
for(i = 1; i < HEATERS; i++)
|
||||
for(size_t i = 1; i < HEATERS; i++)
|
||||
{
|
||||
if(heatOnPins[i] >= 0)
|
||||
pinModeNonDue(heatOnPins[i], OUTPUT);
|
||||
|
@ -227,18 +234,261 @@ void Platform::InitZProbe()
|
|||
zProbeCount = 0;
|
||||
zProbeOnSum = 0;
|
||||
zProbeOffSum = 0;
|
||||
zProbeMinSum = 0;
|
||||
zProbeWorking = false;
|
||||
for (uint8_t i = 0; i < NumZProbeReadingsAveraged; ++i)
|
||||
{
|
||||
zProbeReadings[i] = 0;
|
||||
}
|
||||
|
||||
if (zProbeType != 0)
|
||||
if (nvData.zProbeType == 1 || nvData.zProbeType == 2)
|
||||
{
|
||||
pinMode(zProbeModulationPin, OUTPUT);
|
||||
digitalWrite(zProbeModulationPin, HIGH); // enable the IR LED
|
||||
SetZProbing(false);
|
||||
}
|
||||
}
|
||||
|
||||
int Platform::GetRawZHeight() const
|
||||
{
|
||||
return (nvData.zProbeType != 0) ? analogRead(zProbePin) : 0;
|
||||
}
|
||||
|
||||
int Platform::ZProbe() const
|
||||
{
|
||||
switch(nvData.zProbeType)
|
||||
{
|
||||
case 1: // simple IR sensor
|
||||
return (int)((zProbeOnSum + zProbeOffSum)/NumZProbeReadingsAveraged);
|
||||
case 2: // modulated IR sensor
|
||||
return (int)((zProbeOnSum - zProbeOffSum)/(NumZProbeReadingsAveraged/2));
|
||||
case 3: // ultrasonic sensor
|
||||
return (int)((zProbeOnSum + zProbeOffSum - zProbeMinSum)/(NumZProbeReadingsAveraged/2));
|
||||
default:
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
int Platform::GetZProbeSecondaryValues(int& v1, int& v2) const
|
||||
{
|
||||
switch(nvData.zProbeType)
|
||||
{
|
||||
case 2: // modulated IR sensor
|
||||
v1 = zProbeOnSum/(NumZProbeReadingsAveraged/2); // pass back the reading with IR turned on
|
||||
return 1;
|
||||
case 3: // ultrasonic
|
||||
v1 = (zProbeOnSum + zProbeOffSum)/NumZProbeReadingsAveraged; // pass back the raw reading
|
||||
v2 = zProbeMinSum/NumZProbeReadingsAveraged; // pass back the minimum found
|
||||
return 2;
|
||||
default:
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
int Platform::GetZProbeType() const
|
||||
{
|
||||
return nvData.zProbeType;
|
||||
}
|
||||
|
||||
void Platform::PollZHeight()
|
||||
{
|
||||
uint16_t currentReading = GetRawZHeight();
|
||||
if (nvData.zProbeType == 2)
|
||||
{
|
||||
// Reverse the modulation, ready for next time
|
||||
digitalWrite(zProbeModulationPin, (zProbeCount & 1) ? HIGH : LOW);
|
||||
}
|
||||
if (zProbeCount & 1)
|
||||
{
|
||||
zProbeOffSum = zProbeOffSum - zProbeReadings[zProbeCount] + currentReading;
|
||||
}
|
||||
else
|
||||
{
|
||||
zProbeOnSum = zProbeOnSum - zProbeReadings[zProbeCount] + currentReading;
|
||||
}
|
||||
zProbeReadings[zProbeCount] = currentReading;
|
||||
++zProbeCount;
|
||||
if (zProbeCount == NumZProbeReadingsAveraged)
|
||||
{
|
||||
zProbeCount = 0;
|
||||
if (!zProbeWorking)
|
||||
{
|
||||
zProbeWorking = true;
|
||||
if (nvData.zProbeType == 3)
|
||||
{
|
||||
zProbeMinSum = zProbeOnSum + zProbeOffSum;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (nvData.zProbeType == 3 && zProbeWorking)
|
||||
{
|
||||
// Update the minimum value seen from the ultrasonic sensor
|
||||
long temp = zProbeOnSum + zProbeOffSum;
|
||||
if (temp < zProbeMinSum)
|
||||
{
|
||||
zProbeMinSum = temp;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
float Platform::ZProbeStopHeight() const
|
||||
{
|
||||
switch(nvData.zProbeType)
|
||||
{
|
||||
case 1:
|
||||
case 2:
|
||||
return nvData.irZProbeParameters.GetStopHeight(GetTemperature(0));
|
||||
case 3:
|
||||
return nvData.ultrasonicZProbeParameters.GetStopHeight(GetTemperature(0));
|
||||
default:
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
void Platform::SetZProbeType(int pt)
|
||||
{
|
||||
int newZProbeType = (pt >= 0 && pt <= 3) ? pt : 0;
|
||||
if (newZProbeType != nvData.zProbeType)
|
||||
{
|
||||
nvData.zProbeType = newZProbeType;
|
||||
WriteNvData();
|
||||
}
|
||||
InitZProbe();
|
||||
}
|
||||
|
||||
bool Platform::GetZProbeParameters(struct ZProbeParameters& params) const
|
||||
{
|
||||
switch (nvData.zProbeType)
|
||||
{
|
||||
case 1:
|
||||
case 2:
|
||||
params = nvData.irZProbeParameters;
|
||||
return true;
|
||||
case 3:
|
||||
params = nvData.ultrasonicZProbeParameters;
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
bool Platform::SetZProbeParameters(const struct ZProbeParameters& params)
|
||||
{
|
||||
switch (nvData.zProbeType)
|
||||
{
|
||||
case 1:
|
||||
case 2:
|
||||
if (nvData.irZProbeParameters != params)
|
||||
{
|
||||
nvData.irZProbeParameters = params;
|
||||
WriteNvData();
|
||||
}
|
||||
return true;
|
||||
case 3:
|
||||
if (nvData.ultrasonicZProbeParameters != params)
|
||||
{
|
||||
nvData.ultrasonicZProbeParameters = params;
|
||||
WriteNvData();
|
||||
}
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Return true if we must hoe X and U before we home Z (i.e. we are using an IR probe)
|
||||
bool Platform::MustHomeXYBeforeZ() const
|
||||
{
|
||||
return nvData.zProbeType == 1 || nvData.zProbeType == 2;
|
||||
}
|
||||
|
||||
void Platform::WriteNvData()
|
||||
{
|
||||
DueFlashStorage::write(nvAddress, &nvData, sizeof(nvData));
|
||||
}
|
||||
|
||||
void Platform::SetZProbing(bool starting)
|
||||
{
|
||||
if (starting && nvData.zProbeType == 3)
|
||||
{
|
||||
zProbeMinSum = zProbeOnSum + zProbeOffSum; //look for a new minimum
|
||||
// Tell the ultrasonic sensor we are starting or have completed a z-probe
|
||||
//digitalWrite(zProbeModulationPin, (starting) ? LOW : HIGH);
|
||||
}
|
||||
}
|
||||
|
||||
float Platform::Time()
|
||||
{
|
||||
unsigned long now = micros();
|
||||
if(now < lastTimeCall) // Has timer overflowed?
|
||||
addToTime += ((float)ULONG_MAX)*TIME_FROM_REPRAP;
|
||||
lastTimeCall = now;
|
||||
return addToTime + TIME_FROM_REPRAP*(float)now;
|
||||
}
|
||||
|
||||
void Platform::Exit()
|
||||
{
|
||||
Message(HOST_MESSAGE, "Platform class exited.\n");
|
||||
active = false;
|
||||
}
|
||||
|
||||
Compatibility Platform::Emulating() const
|
||||
{
|
||||
if(nvData.compatibility == reprapFirmware)
|
||||
return me;
|
||||
return nvData.compatibility;
|
||||
}
|
||||
|
||||
void Platform::SetEmulating(Compatibility c)
|
||||
{
|
||||
if(c != me && c != reprapFirmware && c != marlin)
|
||||
{
|
||||
Message(HOST_MESSAGE, "Attempt to emulate unsupported firmware.\n");
|
||||
return;
|
||||
}
|
||||
if(c == reprapFirmware)
|
||||
{
|
||||
c = me;
|
||||
}
|
||||
if (nvData.compatibility != c)
|
||||
{
|
||||
nvData.compatibility = c;
|
||||
WriteNvData();
|
||||
}
|
||||
}
|
||||
|
||||
void Platform::UpdateNetworkAddress(byte dst[4], const byte src[4])
|
||||
{
|
||||
bool changed = false;
|
||||
for(uint8_t i = 0; i < 4; i++)
|
||||
{
|
||||
if(dst[i] != src[i])
|
||||
{
|
||||
dst[i] = src[i];
|
||||
changed = true;
|
||||
}
|
||||
}
|
||||
if (changed)
|
||||
{
|
||||
WriteNvData();
|
||||
}
|
||||
}
|
||||
|
||||
void Platform::SetIPAddress(byte ip[])
|
||||
{
|
||||
UpdateNetworkAddress(nvData.ipAddress, ip);
|
||||
}
|
||||
|
||||
void Platform::SetGateWay(byte gw[])
|
||||
{
|
||||
UpdateNetworkAddress(nvData.gateWay, gw);
|
||||
}
|
||||
|
||||
void Platform::SetNetMask(byte nm[])
|
||||
{
|
||||
UpdateNetworkAddress(nvData.netMask, nm);
|
||||
}
|
||||
|
||||
void Platform::StartNetwork()
|
||||
{
|
||||
network->Init();
|
||||
|
@ -360,7 +610,7 @@ void Platform::ClassReport(char* className, float &lastTime)
|
|||
|
||||
// Result is in degrees celsius
|
||||
|
||||
float Platform::GetTemperature(int8_t heater)
|
||||
float Platform::GetTemperature(int8_t heater) const
|
||||
{
|
||||
// If the ADC reading is N then for an ideal ADC, the input voltage is at least N/(AD_RANGE + 1) and less than (N + 1)/(AD_RANGE + 1), times the analog reference.
|
||||
// So we add 0.5 to to the reading to get a better estimate of the input. But first, recognise the special case of thermistor disconnected.
|
||||
|
@ -394,12 +644,18 @@ void Platform::SetHeater(int8_t heater, const float& power)
|
|||
|
||||
EndStopHit Platform::Stopped(int8_t drive)
|
||||
{
|
||||
if(zProbeType > 0)
|
||||
if(nvData.zProbeType > 0)
|
||||
{ // Z probe is used for both X and Z.
|
||||
if(drive != Y_AXIS)
|
||||
{
|
||||
if(ZProbe() > zProbeADValue)
|
||||
int zProbeVal = ZProbe();
|
||||
int zProbeADValue = (nvData.zProbeType == 3)
|
||||
? nvData.ultrasonicZProbeParameters.adcValue
|
||||
: nvData.irZProbeParameters.adcValue;
|
||||
if(zProbeVal >= zProbeADValue)
|
||||
return lowHit;
|
||||
else if (zProbeVal * 10 >= zProbeADValue * 9) // if we are at/above 90% of the target value
|
||||
return lowNear;
|
||||
else
|
||||
return noStop;
|
||||
}
|
||||
|
|
224
Platform.h
224
Platform.h
|
@ -203,7 +203,8 @@ enum EndStopHit
|
|||
{
|
||||
noStop = 0, // no enstop hit
|
||||
lowHit = 1, // low switch hit, or Z-probe in use and above threshold
|
||||
highHit = 2 // high stop hit
|
||||
highHit = 2, // high stop hit
|
||||
lowNear = 3 // approaching Z-probe threshold
|
||||
};
|
||||
|
||||
/***************************************************************************************************/
|
||||
|
@ -410,6 +411,44 @@ private:
|
|||
|
||||
/***************************************************************************************************************/
|
||||
|
||||
// Struct for holding Z probe parameters
|
||||
|
||||
struct ZProbeParameters
|
||||
{
|
||||
int adcValue; // the target ADC value
|
||||
float height; // the nozzle height at which the target ADC value is returned
|
||||
float calibTemperature; // the temperature at which we did the calibration
|
||||
float temperatureCoefficient; // the variation of height with bed temperature
|
||||
|
||||
void Init(bool isUltrasonic)
|
||||
{
|
||||
adcValue = Z_PROBE_AD_VALUE;
|
||||
height = Z_PROBE_STOP_HEIGHT;
|
||||
calibTemperature = 20.0;
|
||||
temperatureCoefficient = (isUltrasonic)
|
||||
? 0.007575 // speed of sound correction assuming half wavelength between sensor and bed
|
||||
: 0.0; // no default temperature correction for IR sensor
|
||||
}
|
||||
|
||||
float GetStopHeight(float temperature) const
|
||||
{
|
||||
return ((temperature - calibTemperature) * temperatureCoefficient) + height;
|
||||
}
|
||||
|
||||
bool operator==(const ZProbeParameters& other) const
|
||||
{
|
||||
return adcValue == other.adcValue
|
||||
&& height == other.height
|
||||
&& calibTemperature == other.calibTemperature
|
||||
&& temperatureCoefficient == other.temperatureCoefficient;
|
||||
}
|
||||
|
||||
bool operator!=(const ZProbeParameters& other) const
|
||||
{
|
||||
return !operator==(other);
|
||||
}
|
||||
};
|
||||
|
||||
// The main class that defines the RepRap machine for the benefit of the other classes
|
||||
|
||||
class Platform
|
||||
|
@ -495,17 +534,21 @@ class Platform
|
|||
void SetAxisLength(int8_t axis, float value);
|
||||
bool HighStopButNotLow(int8_t axis) const;
|
||||
|
||||
// Z probe
|
||||
|
||||
float ZProbeStopHeight() const;
|
||||
void SetZProbeStopHeight(float z);
|
||||
int ZProbe() const;
|
||||
int ZProbeOnVal() const;
|
||||
void SetZProbe(int iZ);
|
||||
int GetZProbeSecondaryValues(int& v1, int& v2) const;
|
||||
void SetZProbeType(int iZ);
|
||||
int GetZProbeType() const;
|
||||
void SetZProbing(bool starting);
|
||||
bool GetZProbeParameters(struct ZProbeParameters& params) const;
|
||||
bool SetZProbeParameters(const struct ZProbeParameters& params);
|
||||
bool MustHomeXYBeforeZ() const;
|
||||
|
||||
// Heat and temperature
|
||||
|
||||
float GetTemperature(int8_t heater); // Result is in degrees celsius
|
||||
float GetTemperature(int8_t heater) const; // Result is in degrees Celsius
|
||||
void SetHeater(int8_t heater, const float& power); // power is a fraction in [0,1]
|
||||
float PidKp(int8_t heater) const;
|
||||
float PidKi(int8_t heater) const;
|
||||
|
@ -526,6 +569,27 @@ class Platform
|
|||
|
||||
private:
|
||||
|
||||
// This is the structure used to hold out non-volatile data.
|
||||
// The SAM3X doesn't have EEPROM so we save the data to flash. This unfortunately means that it gets cleared
|
||||
// every time we reprogram the firmware. So there is no need to cater for writing one version of this
|
||||
// struct and reading back another.
|
||||
|
||||
struct FlashData
|
||||
{
|
||||
static const uint16_t magicValue = 0x59B2; // value we use to recognise that he flash data has been written
|
||||
uint16_t magic;
|
||||
ZProbeParameters irZProbeParameters; // Z probe values for the IR sensor
|
||||
ZProbeParameters ultrasonicZProbeParameters; // Z probe values for the IR sensor
|
||||
int zProbeType; // the type of Z probe we are using
|
||||
byte ipAddress[4];
|
||||
byte netMask[4];
|
||||
byte gateWay[4];
|
||||
Compatibility compatibility;
|
||||
};
|
||||
|
||||
static const uint32_t nvAddress = 0; // address in flash where we store the nonvolatile data
|
||||
FlashData nvData;
|
||||
|
||||
float lastTime;
|
||||
float longWait;
|
||||
float addToTime;
|
||||
|
@ -533,8 +597,6 @@ class Platform
|
|||
|
||||
bool active;
|
||||
|
||||
Compatibility compatibility;
|
||||
|
||||
void InitialiseInterrupts();
|
||||
int GetRawZHeight() const;
|
||||
|
||||
|
@ -555,29 +617,25 @@ class Platform
|
|||
int8_t potWipes[DRIVES];
|
||||
float senseResistor;
|
||||
float maxStepperDigipotVoltage;
|
||||
// float zProbeGradient;
|
||||
// float zProbeConstant;
|
||||
int8_t zProbePin;
|
||||
int8_t zProbeModulationPin;
|
||||
int8_t zProbeType;
|
||||
uint8_t zProbeCount;
|
||||
long zProbeOnSum; // sum of readings taken when IR led is on
|
||||
long zProbeOffSum; // sum of readings taken when IR led is on
|
||||
long zProbeMinSum; // minimum zprobe value seen, used with ultrasonic probe
|
||||
uint16_t zProbeReadings[NumZProbeReadingsAveraged];
|
||||
int zProbeADValue;
|
||||
float zProbeStopHeight;
|
||||
bool zProbeWorking;
|
||||
|
||||
// AXES
|
||||
|
||||
void InitZProbe();
|
||||
void PollZHeight();
|
||||
void UpdateNetworkAddress(byte dst[4], const byte src[4]);
|
||||
void WriteNvData();
|
||||
|
||||
float axisLengths[AXES];
|
||||
float homeFeedrates[AXES];
|
||||
float headOffsets[AXES]; // FIXME - needs a 2D array
|
||||
// bool zProbeStarting;
|
||||
// float zProbeHigh;
|
||||
// float zProbeLow;
|
||||
|
||||
// HEATERS - Bed is assumed to be the first
|
||||
|
||||
|
@ -612,61 +670,19 @@ class Platform
|
|||
MassStorage* massStorage;
|
||||
FileStore* files[MAX_FILES];
|
||||
bool fileStructureInitialised;
|
||||
//bool* inUse;
|
||||
char* webDir;
|
||||
char* gcodeDir;
|
||||
char* sysDir;
|
||||
char* tempDir;
|
||||
char* configFile;
|
||||
//byte* buf[MAX_FILES];
|
||||
//int bPointer[MAX_FILES];
|
||||
//char fileList[FILE_LIST_LENGTH];
|
||||
//char scratchString[STRING_LENGTH];
|
||||
|
||||
// Network connection
|
||||
|
||||
Network* network;
|
||||
byte ipAddress[4];
|
||||
byte netMask[4];
|
||||
byte gateWay[4];
|
||||
};
|
||||
|
||||
// Seconds
|
||||
|
||||
inline float Platform::Time()
|
||||
{
|
||||
unsigned long now = micros();
|
||||
if(now < lastTimeCall) // Has timer overflowed?
|
||||
addToTime += ((float)ULONG_MAX)*TIME_FROM_REPRAP;
|
||||
lastTimeCall = now;
|
||||
return addToTime + TIME_FROM_REPRAP*(float)now;
|
||||
}
|
||||
|
||||
inline void Platform::Exit()
|
||||
{
|
||||
Message(HOST_MESSAGE, "Platform class exited.\n");
|
||||
active = false;
|
||||
}
|
||||
|
||||
inline Compatibility Platform::Emulating() const
|
||||
{
|
||||
if(compatibility == reprapFirmware)
|
||||
return me;
|
||||
return compatibility;
|
||||
}
|
||||
|
||||
inline void Platform::SetEmulating(Compatibility c)
|
||||
{
|
||||
if(c != me && c != reprapFirmware && c != marlin)
|
||||
{
|
||||
Message(HOST_MESSAGE, "Attempt to emulate unsupported firmware.\n");
|
||||
return;
|
||||
}
|
||||
if(c == reprapFirmware)
|
||||
c = me;
|
||||
compatibility = c;
|
||||
}
|
||||
|
||||
// Where the htm etc files are
|
||||
|
||||
inline const char* Platform::GetWebDir() const
|
||||
|
@ -824,76 +840,6 @@ inline void Platform::SetMaxFeedrate(int8_t drive, float value)
|
|||
maxFeedrates[drive] = value;
|
||||
}
|
||||
|
||||
inline int Platform::GetRawZHeight() const
|
||||
{
|
||||
return (zProbeType != 0) ? analogRead(zProbePin) : 0;
|
||||
}
|
||||
|
||||
inline int Platform::ZProbe() const
|
||||
{
|
||||
return (zProbeType == 1)
|
||||
? (zProbeOnSum + zProbeOffSum)/NumZProbeReadingsAveraged // non-modulated mode
|
||||
: (zProbeType == 2)
|
||||
? (zProbeOnSum - zProbeOffSum)/(NumZProbeReadingsAveraged/2) // modulated mode
|
||||
: 0; // z-probe disabled
|
||||
}
|
||||
|
||||
inline int Platform::ZProbeOnVal() const
|
||||
{
|
||||
return (zProbeType == 1)
|
||||
? (zProbeOnSum + zProbeOffSum)/NumZProbeReadingsAveraged
|
||||
: (zProbeType == 2)
|
||||
? zProbeOnSum/(NumZProbeReadingsAveraged/2)
|
||||
: 0;
|
||||
}
|
||||
|
||||
inline float Platform::ZProbeStopHeight() const
|
||||
{
|
||||
return zProbeStopHeight;
|
||||
}
|
||||
|
||||
inline void Platform::SetZProbeStopHeight(float z)
|
||||
{
|
||||
zProbeStopHeight = z;
|
||||
}
|
||||
|
||||
inline void Platform::SetZProbe(int iZ)
|
||||
{
|
||||
zProbeADValue = iZ;
|
||||
}
|
||||
|
||||
inline void Platform::SetZProbeType(int pt)
|
||||
{
|
||||
zProbeType = (pt >= 0 && pt <= 2) ? pt : 0;
|
||||
InitZProbe();
|
||||
}
|
||||
|
||||
inline int Platform::GetZProbeType() const
|
||||
{
|
||||
return zProbeType;
|
||||
}
|
||||
|
||||
inline void Platform::PollZHeight()
|
||||
{
|
||||
uint16_t currentReading = GetRawZHeight();
|
||||
if (zProbeType == 2)
|
||||
{
|
||||
// Reverse the modulation, ready for next time
|
||||
digitalWrite(zProbeModulationPin, (zProbeCount & 1) ? HIGH : LOW);
|
||||
}
|
||||
if (zProbeCount & 1)
|
||||
{
|
||||
zProbeOffSum = zProbeOffSum - zProbeReadings[zProbeCount] + currentReading;
|
||||
}
|
||||
else
|
||||
{
|
||||
zProbeOnSum = zProbeOnSum - zProbeReadings[zProbeCount] + currentReading;
|
||||
}
|
||||
zProbeReadings[zProbeCount] = currentReading;
|
||||
zProbeCount = (zProbeCount + 1) % NumZProbeReadingsAveraged;
|
||||
}
|
||||
|
||||
|
||||
//********************************************************************************************************
|
||||
|
||||
// Drive the RepRap machine - Heat and temperature
|
||||
|
@ -990,37 +936,19 @@ inline Network* Platform::GetNetwork()
|
|||
return network;
|
||||
}
|
||||
|
||||
inline void Platform::SetIPAddress(byte ip[])
|
||||
{
|
||||
for(uint8_t i = 0; i < 4; i++)
|
||||
ipAddress[i] = ip[i];
|
||||
}
|
||||
|
||||
inline const byte* Platform::IPAddress() const
|
||||
{
|
||||
return ipAddress;
|
||||
}
|
||||
|
||||
inline void Platform::SetNetMask(byte nm[])
|
||||
{
|
||||
for(uint8_t i = 0; i < 4; i++)
|
||||
netMask[i] = nm[i];
|
||||
return nvData.ipAddress;
|
||||
}
|
||||
|
||||
inline const byte* Platform::NetMask() const
|
||||
{
|
||||
return netMask;
|
||||
}
|
||||
|
||||
inline void Platform::SetGateWay(byte gw[])
|
||||
{
|
||||
for(uint8_t i = 0; i < 4; i++)
|
||||
gateWay[i] = gw[i];
|
||||
return nvData.netMask;
|
||||
}
|
||||
|
||||
inline const byte* Platform::GateWay() const
|
||||
{
|
||||
return gateWay;
|
||||
return nvData.gateWay;
|
||||
}
|
||||
|
||||
inline Line* Platform::GetLine() const
|
||||
|
|
BIN
Release/RepRapFirmware-057o-dc52.bin
Normal file
BIN
Release/RepRapFirmware-057o-dc52.bin
Normal file
Binary file not shown.
|
@ -440,14 +440,20 @@ void Webserver::GetJsonResponse(const char* request)
|
|||
// Send the Z probe value
|
||||
char scratch[SHORT_STRING_LENGTH+1];
|
||||
scratch[SHORT_STRING_LENGTH] = 0;
|
||||
if (platform->GetZProbeType() == 2)
|
||||
{
|
||||
snprintf(scratch, SHORT_STRING_LENGTH, ",\"probe\":\"%d (%d)\"", (int)platform->ZProbe(), platform->ZProbeOnVal());
|
||||
}
|
||||
else
|
||||
{
|
||||
snprintf(scratch, SHORT_STRING_LENGTH, ",\"probe\":\"%d\"", (int)platform->ZProbe());
|
||||
}
|
||||
int v0 = platform->ZProbe();
|
||||
int v1, v2;
|
||||
switch(platform->GetZProbeSecondaryValues(v1, v2))
|
||||
{
|
||||
case 1:
|
||||
snprintf(scratch, SHORT_STRING_LENGTH, ",\"probe\":\"%d (%d)\"", v0, v1);
|
||||
break;
|
||||
case 2:
|
||||
snprintf(scratch, SHORT_STRING_LENGTH, ",\"probe\":\"%d (%d, %d)\"", v0, v1, v2);
|
||||
break;
|
||||
default:
|
||||
snprintf(scratch, SHORT_STRING_LENGTH, ",\"probe\":\"%d\"", v0);
|
||||
break;
|
||||
}
|
||||
strncat(jsonResponse, scratch, STRING_LENGTH);
|
||||
|
||||
// Send the amount of buffer space available for gcodes
|
||||
|
|
Reference in a new issue