Various changes relating to zprobe and non-volatile data

1. Z-probing is now done in two stages: a fast stage at the configured
home feed rate until within 10% of the target value, then a slow stage
at 20% of that feed rate.
2. Provisional support for ultrasonic Z-probe.
3. Added calibration temperature and height temperature coefficient to Z
probe parameters.
4. Z-probe parameters and Z-probe type are now saved to flash memory so
that they survive power-off and reset cycles. Separate parameters are
retained for IR and ultrasonic probes in case both are fitted.
5. Fixed issue with doing slow Z-moves immediately after Z-homing or
probing.
This commit is contained in:
David Crocker 2014-02-24 14:17:11 +00:00
parent b43af6a8fd
commit 92c17dede2
15 changed files with 3384 additions and 1408 deletions

View file

@ -24,8 +24,8 @@ Licence: GPL
#define CONFIGURATION_H #define CONFIGURATION_H
#define NAME "RepRapFirmware" #define NAME "RepRapFirmware"
#define VERSION "0.57n-dc42" #define VERSION "0.57o-dc42"
#define DATE "2014-02-18" #define DATE "2014-02-24"
#define LAST_AUTHOR "dc42" #define LAST_AUTHOR "dc42"
// Other firmware that we might switch to be compatible with. // Other firmware that we might switch to be compatible with.

83
Flash/DueFlashStorage.cpp Normal file
View file

@ -0,0 +1,83 @@
#include "DueFlashStorage.h"
void DueFlashStorage::init() {
/* Initialize flash: 6 wait states for flash writing. */
uint32_t retCode = flash_init(FLASH_ACCESS_MODE_128, 6);
if (retCode != FLASH_RC_OK) {
_FLASH_DEBUG("Flash init failed\n");
}
}
byte DueFlashStorage::read(uint32_t address) {
return FLASH_START[address];
}
void DueFlashStorage::read(uint32_t address, void *data, uint32_t dataLength) {
memcpy(data, FLASH_START+address, dataLength);
}
bool DueFlashStorage::write(uint32_t address, byte value) {
uint32_t byteLength = 1;
uint32_t retCode = flash_unlock((uint32_t)FLASH_START+address, (uint32_t)FLASH_START+address + byteLength - 1, 0, 0);
if (retCode != FLASH_RC_OK) {
_FLASH_DEBUG("Failed to unlock flash for write\n");
return false;
}
// write data
retCode = flash_write((uint32_t)FLASH_START+address, &value, byteLength, 1);
if (retCode != FLASH_RC_OK) {
_FLASH_DEBUG("Flash write failed\n");
return false;
}
// Lock page
retCode = flash_lock((uint32_t)FLASH_START+address, (uint32_t)FLASH_START+address + byteLength - 1, 0, 0);
if (retCode != FLASH_RC_OK) {
_FLASH_DEBUG("Failed to lock flash page\n");
return false;
}
return true;
}
bool DueFlashStorage::write(uint32_t address, const void *data, uint32_t dataLength) {
if ((uint32_t)FLASH_START+address < IFLASH1_ADDR) {
_FLASH_DEBUG("Flash write address too low\n");
return false;
}
if ((uint32_t)FLASH_START+address >= (IFLASH1_ADDR + IFLASH1_SIZE)) {
_FLASH_DEBUG("Flash write address too high\n");
return false;
}
if (((uint32_t)FLASH_START+address & 3) != 0) {
_FLASH_DEBUG("Flash start address must be on four byte boundary\n");
return false;
}
// Unlock page
uint32_t retCode = flash_unlock((uint32_t)FLASH_START+address, (uint32_t)FLASH_START+address + dataLength - 1, 0, 0);
if (retCode != FLASH_RC_OK) {
_FLASH_DEBUG("Failed to unlock flash for write\n");
return false;
}
// write data
retCode = flash_write((uint32_t)FLASH_START+address, data, dataLength, 1);
if (retCode != FLASH_RC_OK) {
_FLASH_DEBUG("Flash write failed\n");
return false;
}
// Lock page
retCode = flash_lock((uint32_t)FLASH_START+address, (uint32_t)FLASH_START+address + dataLength - 1, 0, 0);
if (retCode != FLASH_RC_OK) {
_FLASH_DEBUG("Failed to lock flash page\n");
return false;
}
return true;
}

52
Flash/DueFlashStorage.h Normal file
View file

@ -0,0 +1,52 @@
/*
DueFlashStorage saves non-volatile data for Arduino Due.
The library is made to be similar to EEPROM library
Uses flash block 1 per default.
Note: uploading new software will erase all flash so data written to flash
using this library will not survive a new software upload.
Inspiration from Pansenti at https://github.com/Pansenti/DueFlash
Rewritten and modified by Sebastian Nilsson
Further modified up by David Crocker
*/
#ifndef DUEFLASHSTORAGE_H
#define DUEFLASHSTORAGE_H
#include <Arduino.h>
#include "flash_efc.h"
#include "efc.h"
// 1Kb of data
#define DATA_LENGTH ((IFLASH1_PAGE_SIZE/sizeof(byte))*4)
// Choose a start address close to the top of the Flash 1 memory space
#define FLASH_START ((byte *)(IFLASH1_ADDR + IFLASH1_SIZE - DATA_LENGTH))
// FLASH_DEBUG can be enabled to get debugging information displayed.
//#define FLASH_DEBUG
#ifdef FLASH_DEBUG
#define _FLASH_DEBUG(x) Serial.print(x);
#else
#define _FLASH_DEBUG(x)
#endif
// DueFlash is the main namespace for flash functions
namespace DueFlashStorage {
void init();
// write() writes the specified amount of data into flash.
// flashStart is the address in memory where the write should start
// data is a pointer to the data to be written
// dataLength is length of data in bytes
byte read(uint32_t address);
void read(uint32_t address, void *data, uint32_t dataLength);
bool write(uint32_t address, byte value);
bool write(uint32_t address, const void *data, uint32_t dataLength);
};
#endif

340
Flash/efc.cpp Normal file
View file

@ -0,0 +1,340 @@
/**
* \file
*
* \brief Enhanced Embedded Flash Controller (EEFC) driver for SAM.
*
* Copyright (c) 2011-2012 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
#include "efc.h"
/// @cond 0
/**INDENT-OFF**/
#ifdef __cplusplus
extern "C" {
#endif
/**INDENT-ON**/
/// @endcond
/**
* \defgroup sam_drivers_efc_group Enhanced Embedded Flash Controller (EEFC)
*
* The Enhanced Embedded Flash Controller ensures the interface of the Flash
* block with the 32-bit internal bus.
*
* @{
*/
/* Address definition for read operation */
# define READ_BUFF_ADDR0 IFLASH0_ADDR
# define READ_BUFF_ADDR1 IFLASH1_ADDR
/* Flash Writing Protection Key */
#define FWP_KEY 0x5Au
#if (SAM4S || SAM4E)
#define EEFC_FCR_FCMD(value) \
((EEFC_FCR_FCMD_Msk & ((value) << EEFC_FCR_FCMD_Pos)))
#define EEFC_ERROR_FLAGS (EEFC_FSR_FLOCKE | EEFC_FSR_FCMDE | EEFC_FSR_FLERR)
#else
#define EEFC_ERROR_FLAGS (EEFC_FSR_FLOCKE | EEFC_FSR_FCMDE)
#endif
/*
* Local function declaration.
* Because they are RAM functions, they need 'extern' declaration.
*/
extern void efc_write_fmr(Efc *p_efc, uint32_t ul_fmr);
extern uint32_t efc_perform_fcr(Efc *p_efc, uint32_t ul_fcr);
/**
* \brief Initialize the EFC controller.
*
* \param ul_access_mode 0 for 128-bit, EEFC_FMR_FAM for 64-bit.
* \param ul_fws The number of wait states in cycle (no shift).
*
* \return 0 if successful.
*/
uint32_t efc_init(Efc *p_efc, uint32_t ul_access_mode, uint32_t ul_fws)
{
efc_write_fmr(p_efc, ul_access_mode | EEFC_FMR_FWS(ul_fws));
return EFC_RC_OK;
}
/**
* \brief Enable the flash ready interrupt.
*
* \param p_efc Pointer to an EFC instance.
*/
void efc_enable_frdy_interrupt(Efc *p_efc)
{
uint32_t ul_fmr = p_efc->EEFC_FMR;
efc_write_fmr(p_efc, ul_fmr | EEFC_FMR_FRDY);
}
/**
* \brief Disable the flash ready interrupt.
*
* \param p_efc Pointer to an EFC instance.
*/
void efc_disable_frdy_interrupt(Efc *p_efc)
{
uint32_t ul_fmr = p_efc->EEFC_FMR;
efc_write_fmr(p_efc, ul_fmr & (~EEFC_FMR_FRDY));
}
/**
* \brief Set flash access mode.
*
* \param p_efc Pointer to an EFC instance.
* \param ul_mode 0 for 128-bit, EEFC_FMR_FAM for 64-bit.
*/
void efc_set_flash_access_mode(Efc *p_efc, uint32_t ul_mode)
{
uint32_t ul_fmr = p_efc->EEFC_FMR & (~EEFC_FMR_FAM);
efc_write_fmr(p_efc, ul_fmr | ul_mode);
}
/**
* \brief Get flash access mode.
*
* \param p_efc Pointer to an EFC instance.
*
* \return 0 for 128-bit or EEFC_FMR_FAM for 64-bit.
*/
uint32_t efc_get_flash_access_mode(Efc *p_efc)
{
return (p_efc->EEFC_FMR & EEFC_FMR_FAM);
}
/**
* \brief Set flash wait state.
*
* \param p_efc Pointer to an EFC instance.
* \param ul_fws The number of wait states in cycle (no shift).
*/
void efc_set_wait_state(Efc *p_efc, uint32_t ul_fws)
{
uint32_t ul_fmr = p_efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk);
efc_write_fmr(p_efc, ul_fmr | EEFC_FMR_FWS(ul_fws));
}
/**
* \brief Get flash wait state.
*
* \param p_efc Pointer to an EFC instance.
*
* \return The number of wait states in cycle (no shift).
*/
uint32_t efc_get_wait_state(Efc *p_efc)
{
return ((p_efc->EEFC_FMR & EEFC_FMR_FWS_Msk) >> EEFC_FMR_FWS_Pos);
}
/**
* \brief Perform the given command and wait until its completion (or an error).
*
* \note Unique ID commands are not supported, use efc_read_unique_id.
*
* \param p_efc Pointer to an EFC instance.
* \param ul_command Command to perform.
* \param ul_argument Optional command argument.
*
* \note This function will automatically choose to use IAP function.
*
* \return 0 if successful, otherwise returns an error code.
*/
uint32_t efc_perform_command(Efc *p_efc, uint32_t ul_command,
uint32_t ul_argument)
{
/* Unique ID commands are not supported. */
if (ul_command == EFC_FCMD_STUI || ul_command == EFC_FCMD_SPUI) {
return EFC_RC_NOT_SUPPORT;
}
/* Use IAP function with 2 parameters in ROM. */
static uint32_t(*iap_perform_command) (uint32_t, uint32_t);
uint32_t ul_efc_nb = (p_efc == EFC0) ? 0 : 1;
iap_perform_command =
(uint32_t(*)(uint32_t, uint32_t))
*((uint32_t *) CHIP_FLASH_IAP_ADDRESS);
iap_perform_command(ul_efc_nb,
EEFC_FCR_FKEY(FWP_KEY) | EEFC_FCR_FARG(ul_argument) |
EEFC_FCR_FCMD(ul_command));
return (p_efc->EEFC_FSR & EEFC_ERROR_FLAGS);
}
/**
* \brief Get the current status of the EEFC.
*
* \note This function clears the value of some status bits (FLOCKE, FCMDE).
*
* \param p_efc Pointer to an EFC instance.
*
* \return The current status.
*/
uint32_t efc_get_status(Efc *p_efc)
{
return p_efc->EEFC_FSR;
}
/**
* \brief Get the result of the last executed command.
*
* \param p_efc Pointer to an EFC instance.
*
* \return The result of the last executed command.
*/
uint32_t efc_get_result(Efc *p_efc)
{
return p_efc->EEFC_FRR;
}
/**
* \brief Perform read sequence. Supported sequences are read Unique ID and
* read User Signature
*
* \param p_efc Pointer to an EFC instance.
* \param ul_cmd_st Start command to perform.
* \param ul_cmd_sp Stop command to perform.
* \param p_ul_buf Pointer to an data buffer.
* \param ul_size Buffer size.
*
* \return 0 if successful, otherwise returns an error code.
*/
RAMFUNC
uint32_t efc_perform_read_sequence(Efc *p_efc,
uint32_t ul_cmd_st, uint32_t ul_cmd_sp,
uint32_t *p_ul_buf, uint32_t ul_size)
{
volatile uint32_t ul_status;
uint32_t ul_cnt;
uint32_t *p_ul_data =
(uint32_t *) ((p_efc == EFC0) ?
READ_BUFF_ADDR0 : READ_BUFF_ADDR1);
if (p_ul_buf == NULL) {
return EFC_RC_INVALID;
}
p_efc->EEFC_FMR |= (0x1u << 16);
/* Send the Start Read command */
p_efc->EEFC_FCR = EEFC_FCR_FKEY(FWP_KEY) | EEFC_FCR_FARG(0)
| EEFC_FCR_FCMD(ul_cmd_st);
/* Wait for the FRDY bit in the Flash Programming Status Register
* (EEFC_FSR) falls.
*/
do {
ul_status = p_efc->EEFC_FSR;
} while ((ul_status & EEFC_FSR_FRDY) == EEFC_FSR_FRDY);
/* The data is located in the first address of the Flash
* memory mapping.
*/
for (ul_cnt = 0; ul_cnt < ul_size; ul_cnt++) {
p_ul_buf[ul_cnt] = p_ul_data[ul_cnt];
}
/* To stop the read mode */
p_efc->EEFC_FCR =
EEFC_FCR_FKEY(FWP_KEY) | EEFC_FCR_FARG(0) |
EEFC_FCR_FCMD(ul_cmd_sp);
/* Wait for the FRDY bit in the Flash Programming Status Register (EEFC_FSR)
* rises.
*/
do {
ul_status = p_efc->EEFC_FSR;
} while ((ul_status & EEFC_FSR_FRDY) != EEFC_FSR_FRDY);
p_efc->EEFC_FMR &= ~(0x1u << 16);
return EFC_RC_OK;
}
/**
* \brief Set mode register.
*
* \param p_efc Pointer to an EFC instance.
* \param ul_fmr Value of mode register
*/
RAMFUNC
void efc_write_fmr(Efc *p_efc, uint32_t ul_fmr)
{
p_efc->EEFC_FMR = ul_fmr;
}
/**
* \brief Perform command.
*
* \param p_efc Pointer to an EFC instance.
* \param ul_fcr Flash command.
*
* \return The current status.
*/
RAMFUNC
uint32_t efc_perform_fcr(Efc *p_efc, uint32_t ul_fcr)
{
volatile uint32_t ul_status;
p_efc->EEFC_FCR = ul_fcr;
do {
ul_status = p_efc->EEFC_FSR;
} while ((ul_status & EEFC_FSR_FRDY) != EEFC_FSR_FRDY);
return (ul_status & EEFC_ERROR_FLAGS);
}
//@}
/// @cond 0
/**INDENT-OFF**/
#ifdef __cplusplus
}
#endif
/**INDENT-ON**/
/// @endcond

139
Flash/efc.h Normal file
View file

@ -0,0 +1,139 @@
/**
* \file
*
* \brief Embedded Flash Controller (EFC) driver for SAM.
*
* Copyright (c) 2011-2012 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
#ifndef EFC_H_INCLUDED
#define EFC_H_INCLUDED
#include <Arduino.h>
#include <inttypes.h>
#define SAM3XA
#define RAMFUNC __attribute__ ((section(".ramfunc")))
/// @cond 0
/**INDENT-OFF**/
#ifdef __cplusplus
extern "C" {
#endif
/**INDENT-ON**/
/// @endcond
/*! \name EFC return codes */
//! @{
typedef enum efc_rc {
EFC_RC_OK = 0, //!< Operation OK
EFC_RC_YES = 0, //!< Yes
EFC_RC_NO = 1, //!< No
EFC_RC_ERROR = 1, //!< General error
EFC_RC_INVALID, //!< Invalid argument input
EFC_RC_NOT_SUPPORT = 0xFFFFFFFF //!< Operation is not supported
} efc_rc_t;
//! @}
/*! \name EFC command */
//! @{
#define EFC_FCMD_GETD 0x00 //!< Get Flash Descriptor
#define EFC_FCMD_WP 0x01 //!< Write page
#define EFC_FCMD_WPL 0x02 //!< Write page and lock
#define EFC_FCMD_EWP 0x03 //!< Erase page and write page
#define EFC_FCMD_EWPL 0x04 //!< Erase page and write page then lock
#define EFC_FCMD_EA 0x05 //!< Erase all
#if (SAM3SD8)
#define EFC_FCMD_EPL 0x06 //!< Erase plane
#endif
#if (SAM4S || SAM4E)
#define EFC_FCMD_EPA 0x07 //!< Erase pages
#endif
#define EFC_FCMD_SLB 0x08 //!< Set Lock Bit
#define EFC_FCMD_CLB 0x09 //!< Clear Lock Bit
#define EFC_FCMD_GLB 0x0A //!< Get Lock Bit
#define EFC_FCMD_SGPB 0x0B //!< Set GPNVM Bit
#define EFC_FCMD_CGPB 0x0C //!< Clear GPNVM Bit
#define EFC_FCMD_GGPB 0x0D //!< Get GPNVM Bit
#define EFC_FCMD_STUI 0x0E //!< Start unique ID
#define EFC_FCMD_SPUI 0x0F //!< Stop unique ID
#if (!SAM3U && !SAM3SD8 && !SAM3S8)
#define EFC_FCMD_GCALB 0x10 //!< Get CALIB Bit
#endif
#if (SAM4S || SAM4E)
#define EFC_FCMD_ES 0x11 //!< Erase sector
#define EFC_FCMD_WUS 0x12 //!< Write user signature
#define EFC_FCMD_EUS 0x13 //!< Erase user signature
#define EFC_FCMD_STUS 0x14 //!< Start read user signature
#define EFC_FCMD_SPUS 0x15 //!< Stop read user signature
#endif
//! @}
/*! The IAP function entry address */
#define CHIP_FLASH_IAP_ADDRESS (IROM_ADDR + 8)
/*! \name EFC access mode */
//! @{
#define EFC_ACCESS_MODE_128 0
#define EFC_ACCESS_MODE_64 EEFC_FMR_FAM
//! @}
uint32_t efc_init(Efc *p_efc, uint32_t ul_access_mode, uint32_t ul_fws);
void efc_enable_frdy_interrupt(Efc *p_efc);
void efc_disable_frdy_interrupt(Efc *p_efc);
void efc_set_flash_access_mode(Efc *p_efc, uint32_t ul_mode);
uint32_t efc_get_flash_access_mode(Efc *p_efc);
void efc_set_wait_state(Efc *p_efc, uint32_t ul_fws);
uint32_t efc_get_wait_state(Efc *p_efc);
uint32_t efc_perform_command(Efc *p_efc, uint32_t ul_command,
uint32_t ul_argument);
uint32_t efc_get_status(Efc *p_efc);
uint32_t efc_get_result(Efc *p_efc);
uint32_t efc_perform_read_sequence(Efc *p_efc,
uint32_t ul_cmd_st, uint32_t ul_cmd_sp,
uint32_t *p_ul_buf, uint32_t ul_size);
/// @cond 0
/**INDENT-OFF**/
#ifdef __cplusplus
}
#endif
/**INDENT-ON**/
/// @endcond
#endif /* EFC_H_INCLUDED */

916
Flash/flash_efc.cpp Normal file
View file

@ -0,0 +1,916 @@
/**
* \file
*
* \brief Embedded Flash service for SAM.
*
* Copyright (c) 2011-2013 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
#include <string.h>
#include <assert.h>
#include "flash_efc.h"
/// @cond 0
/**INDENT-OFF**/
#ifdef __cplusplus
extern "C" {
#endif
/**INDENT-ON**/
/// @endcond
/**
* \defgroup sam_services_flash_efc_group Embedded Flash Service
*
* The Embedded Flash service provides functions for internal flash operations.
*
* @{
*/
#if SAM4E
/* User signature size */
# define FLASH_USER_SIG_SIZE (512)
#endif
#if SAM4S
/* Internal Flash Controller 0. */
# define EFC EFC0
/* User signature size */
# define FLASH_USER_SIG_SIZE (512)
/* Internal Flash 0 base address. */
# define IFLASH_ADDR IFLASH0_ADDR
/* Internal flash page size. */
# define IFLASH_PAGE_SIZE IFLASH0_PAGE_SIZE
/* Internal flash lock region size. */
# define IFLASH_LOCK_REGION_SIZE IFLASH0_LOCK_REGION_SIZE
#endif
/* Internal Flash Controller 0. */
# define EFC EFC0
/* The max GPNVM number. */
# define GPNVM_NUM_MAX 3
/* Internal Flash 0 base address. */
# define IFLASH_ADDR IFLASH0_ADDR
/* Internal flash page size. */
# define IFLASH_PAGE_SIZE IFLASH0_PAGE_SIZE
/* Internal flash lock region size. */
# define IFLASH_LOCK_REGION_SIZE IFLASH0_LOCK_REGION_SIZE
/* Flash page buffer for alignment */
static uint32_t gs_ul_page_buffer[IFLASH_PAGE_SIZE / sizeof(uint32_t)];
/**
* \brief Translate the given flash address to page and offset values.
* \note pus_page and pus_offset must not be null in order to store the
* corresponding values.
*
* \param pp_efc Pointer to an EFC pointer.
* \param ul_addr Address to translate.
* \param pus_page The first page accessed.
* \param pus_offset Byte offset in the first page.
*/
static void translate_address(Efc **pp_efc, uint32_t ul_addr,
uint16_t *pus_page, uint16_t *pus_offset)
{
Efc *p_efc;
uint16_t us_page;
uint16_t us_offset;
if (ul_addr >= IFLASH1_ADDR) {
p_efc = EFC1;
us_page = (ul_addr - IFLASH1_ADDR) / IFLASH1_PAGE_SIZE;
us_offset = (ul_addr - IFLASH1_ADDR) % IFLASH1_PAGE_SIZE;
} else {
p_efc = EFC0;
us_page = (ul_addr - IFLASH0_ADDR) / IFLASH0_PAGE_SIZE;
us_offset = (ul_addr - IFLASH0_ADDR) % IFLASH0_PAGE_SIZE;
}
/* Store values */
if (pp_efc) {
*pp_efc = p_efc;
}
if (pus_page) {
*pus_page = us_page;
}
if (pus_offset) {
*pus_offset = us_offset;
}
}
/**
* \brief Compute the address of a flash by the given page and offset.
*
* \param p_efc Pointer to an EFC instance.
* \param us_page Page number.
* \param us_offset Byte offset inside page.
* \param pul_addr Computed address (optional).
*/
static void compute_address(Efc *p_efc, uint16_t us_page, uint16_t us_offset,
uint32_t *pul_addr)
{
uint32_t ul_addr;
/* Dual bank flash */
#ifdef EFC1
/* Compute address */
ul_addr = (p_efc == EFC0) ?
IFLASH0_ADDR + us_page * IFLASH_PAGE_SIZE + us_offset :
IFLASH1_ADDR + us_page * IFLASH_PAGE_SIZE + us_offset;
/* One bank flash */
#else
/* avoid Cppcheck Warning */
UNUSED(p_efc);
/* Compute address */
ul_addr = IFLASH_ADDR + us_page * IFLASH_PAGE_SIZE + us_offset;
#endif
/* Store result */
if (pul_addr != NULL) {
*pul_addr = ul_addr;
}
}
/**
* \brief Compute the lock range associated with the given address range.
*
* \param ul_start Start address of lock range.
* \param ul_end End address of lock range.
* \param pul_actual_start Actual start address of lock range.
* \param pul_actual_end Actual end address of lock range.
*/
static void compute_lock_range(uint32_t ul_start, uint32_t ul_end,
uint32_t *pul_actual_start, uint32_t *pul_actual_end)
{
uint32_t ul_actual_start, ul_actual_end;
ul_actual_start = ul_start - (ul_start % IFLASH_LOCK_REGION_SIZE);
ul_actual_end = ul_end - (ul_end % IFLASH_LOCK_REGION_SIZE) +
IFLASH_LOCK_REGION_SIZE - 1;
if (pul_actual_start) {
*pul_actual_start = ul_actual_start;
}
if (pul_actual_end) {
*pul_actual_end = ul_actual_end;
}
}
/**
* \brief Initialize the flash service.
*
* \param ul_mode FLASH_ACCESS_MODE_128 or FLASH_ACCESS_MODE_64.
* \param ul_fws The number of wait states in cycle (no shift).
*
* \return 0 if successful; otherwise returns an error code.
*/
uint32_t flash_init(uint32_t ul_mode, uint32_t ul_fws)
{
efc_init(EFC, ul_mode, ul_fws);
#ifdef EFC1
efc_init(EFC1, ul_mode, ul_fws);
#endif
return FLASH_RC_OK;
}
/**
* \brief Set flash wait state.
*
* \param ul_address Flash bank start address.
* \param ul_fws The number of wait states in cycle (no shift).
*
* \return 0 if successful; otherwise returns an error code.
*/
uint32_t flash_set_wait_state(uint32_t ul_address, uint32_t ul_fws)
{
Efc *p_efc;
translate_address(&p_efc, ul_address, NULL, NULL);
efc_set_wait_state(p_efc, ul_fws);
return FLASH_RC_OK;
}
/**
* \brief Set flash wait state.
*
* \param ul_address Flash bank start address.
* \param ul_fws The number of wait states in cycle (no shift).
*
* \return 0 if successful; otherwise returns an error code.
*/
uint32_t flash_set_wait_state_adaptively(uint32_t ul_address)
{
Efc *p_efc;
uint32_t clock = SystemCoreClock;
translate_address(&p_efc, ul_address, NULL, NULL);
/* Set FWS for embedded Flash access according to operating frequency */
if (clock < CHIP_FREQ_FWS_0) {
efc_set_wait_state(p_efc, 0);
} else if (clock < CHIP_FREQ_FWS_1) {
efc_set_wait_state(p_efc, 1);
} else if (clock < CHIP_FREQ_FWS_2) {
efc_set_wait_state(p_efc, 2);
} else if (clock < CHIP_FREQ_FWS_3) {
efc_set_wait_state(p_efc, 3);
} else {
efc_set_wait_state(p_efc, 4);
}
return FLASH_RC_OK;
}
/**
* \brief Get flash wait state.
*
* \param ul_address Flash bank start address.
*
* \return The number of wait states in cycle (no shift).
*/
uint32_t flash_get_wait_state(uint32_t ul_address)
{
Efc *p_efc;
translate_address(&p_efc, ul_address, NULL, NULL);
return efc_get_wait_state(p_efc);
}
/**
* \brief Get flash descriptor.
*
* \param ul_address Flash bank start address.
* \param pul_flash_descriptor Pointer to a data buffer to store flash descriptor.
* \param ul_size Data buffer size in DWORD.
*
* \return The actual descriptor length.
*/
uint32_t flash_get_descriptor(uint32_t ul_address,
uint32_t *pul_flash_descriptor, uint32_t ul_size)
{
Efc *p_efc;
uint32_t ul_tmp;
uint32_t ul_cnt;
translate_address(&p_efc, ul_address, NULL, NULL);
/* Command fails */
if (FLASH_RC_OK != efc_perform_command(p_efc, EFC_FCMD_GETD, 0)) {
return 0;
} else {
/* Read until no result */
for (ul_cnt = 0;; ul_cnt++) {
ul_tmp = efc_get_result(p_efc);
if ((ul_size > ul_cnt) && (ul_tmp != 0)) {
*pul_flash_descriptor++ = ul_tmp;
} else {
break;
}
}
}
return ul_cnt;
}
/**
* \brief Get flash total page count for the specified bank.
*
* \note The flash descriptor must be fetched from flash_get_descriptor
* function first.
*
* \param pul_flash_descriptor Pointer to a flash descriptor.
*
* \return The flash total page count.
*/
uint32_t flash_get_page_count(const uint32_t *pul_flash_descriptor)
{
return (pul_flash_descriptor[1] / pul_flash_descriptor[2]);
}
/**
* \brief Get flash page count per region (plane) for the specified bank.
*
* \note The flash descriptor must be fetched from flash_get_descriptor
* function first.
*
* \param pul_flash_descriptor Pointer to a flash descriptor.
*
* \return The flash page count per region (plane).
*/
uint32_t flash_get_page_count_per_region(const uint32_t *pul_flash_descriptor)
{
return (pul_flash_descriptor[4] / pul_flash_descriptor[2]);
}
/**
* \brief Get flash region (plane) count for the specified bank.
*
* \note The flash descriptor must be fetched from flash_get_descriptor
* function first.
*
* \param pul_flash_descriptor Pointer to a flash descriptor.
*
* \return The flash region (plane) count.
*/
uint32_t flash_get_region_count(const uint32_t *pul_flash_descriptor)
{
return (pul_flash_descriptor[3]);
}
/**
* \brief Erase the entire flash.
*
* \note Only the flash bank including ul_address will be erased. If there are
* two flash banks, we need to call this function twice with each bank start
* address.
*
* \param ul_address Flash bank start address.
*
* \return 0 if successful; otherwise returns an error code.
*/
uint32_t flash_erase_all(uint32_t ul_address)
{
Efc *p_efc;
translate_address(&p_efc, ul_address, NULL, NULL);
if (EFC_RC_OK != efc_perform_command(p_efc, EFC_FCMD_EA, 0)) {
return FLASH_RC_ERROR;
}
return FLASH_RC_OK;
}
#if SAM3SD8
/**
* \brief Erase the flash by plane.
*
* \param ul_address Flash plane start address.
*
* \note Erase plane command needs a page number parameter which belongs to
* the plane to be erased.
*
* \return 0 if successful; otherwise returns an error code.
*/
uint32_t flash_erase_plane(uint32_t ul_address)
{
Efc *p_efc;
uint16_t us_page;
translate_address(&p_efc, ul_address, &us_page, NULL);
if (EFC_RC_OK != efc_perform_command(p_efc, EFC_FCMD_EPL, us_page)) {
return FLASH_RC_ERROR;
}
return FLASH_RC_OK;
}
#endif
#if (SAM4S || SAM4E)
/**
* \brief Erase the specified pages of flash.
*
* \param ul_address Flash bank start address.
*
* \return 0 if successful; otherwise returns an error code.
*/
uint32_t flash_erase_page(uint32_t ul_address, uint8_t uc_page_num)
{
Efc *p_efc;
uint16_t us_page;
if (uc_page_num >= IFLASH_ERASE_PAGES_INVALID) {
return FLASH_RC_INVALID;
}
if (ul_address & (IFLASH_PAGE_SIZE - 1)) {
return FLASH_RC_INVALID;
}
translate_address(&p_efc, ul_address, &us_page, NULL);
if (EFC_RC_OK != efc_perform_command(p_efc, EFC_FCMD_EPA,
(us_page | uc_page_num))) {
return FLASH_RC_ERROR;
}
return FLASH_RC_OK;
}
/**
* \brief Erase the flash sector.
*
* \note Erase sector command needs a page number parameter which belongs to
* the sector to be erased.
*
* \param ul_address Flash sector start address.
*
* \return 0 if successful; otherwise returns an error code.
*/
uint32_t flash_erase_sector(uint32_t ul_address)
{
Efc *p_efc;
uint16_t us_page;
translate_address(&p_efc, ul_address, &us_page, NULL);
if (EFC_RC_OK != efc_perform_command(p_efc, EFC_FCMD_ES, us_page)) {
return FLASH_RC_ERROR;
}
return FLASH_RC_OK;
}
#endif
/**
* \brief Write a data buffer on flash.
*
* \note This function works in polling mode, and thus only returns when the
* data has been effectively written.
* \note For dual bank flash, this function doesn't support cross write from
* bank 0 to bank 1. In this case, flash_write must be called twice (ie for
* each bank).
*
* \param ul_address Write address.
* \param p_buffer Data buffer.
* \param ul_size Size of data buffer in bytes.
* \param ul_erase_flag Flag to set if erase first.
*
* \return 0 if successful, otherwise returns an error code.
*/
uint32_t flash_write(uint32_t ul_address, const void *p_buffer,
uint32_t ul_size, uint32_t ul_erase_flag)
{
Efc *p_efc;
uint32_t ul_fws_temp;
uint16_t us_page;
uint16_t us_offset;
uint32_t writeSize;
uint32_t ul_page_addr;
uint16_t us_padding;
uint32_t ul_error;
uint32_t ul_idx;
uint32_t *p_aligned_dest;
uint8_t *puc_page_buffer = (uint8_t *) gs_ul_page_buffer;
translate_address(&p_efc, ul_address, &us_page, &us_offset);
/* According to the errata, set the wait state value to 6. */
ul_fws_temp = efc_get_wait_state(p_efc);
efc_set_wait_state(p_efc, 6);
/* Write all pages */
while (ul_size > 0) {
/* Copy data in temporary buffer to avoid alignment problems. */
writeSize = Min((uint32_t) IFLASH_PAGE_SIZE - us_offset,
ul_size);
compute_address(p_efc, us_page, 0, &ul_page_addr);
us_padding = IFLASH_PAGE_SIZE - us_offset - writeSize;
/* Pre-buffer data */
memcpy(puc_page_buffer, (void *)ul_page_addr, us_offset);
/* Buffer data */
memcpy(puc_page_buffer + us_offset, p_buffer, writeSize);
/* Post-buffer data */
memcpy(puc_page_buffer + us_offset + writeSize,
(void *)(ul_page_addr + us_offset + writeSize),
us_padding);
/* Write page.
* Writing 8-bit and 16-bit data is not allowed and may lead to
* unpredictable data corruption.
*/
p_aligned_dest = (uint32_t *) ul_page_addr;
for (ul_idx = 0; ul_idx < (IFLASH_PAGE_SIZE / sizeof(uint32_t));
++ul_idx) {
*p_aligned_dest++ = gs_ul_page_buffer[ul_idx];
}
if (ul_erase_flag) {
ul_error = efc_perform_command(p_efc, EFC_FCMD_EWP,
us_page);
} else {
ul_error = efc_perform_command(p_efc, EFC_FCMD_WP,
us_page);
}
if (ul_error) {
return ul_error;
}
/* Progression */
p_buffer = (void *)((uint32_t) p_buffer + writeSize);
ul_size -= writeSize;
us_page++;
us_offset = 0;
}
/* According to the errata, restore the wait state value. */
efc_set_wait_state(p_efc, ul_fws_temp);
return FLASH_RC_OK;
}
/**
* \brief Lock all the regions in the given address range. The actual lock
* range is reported through two output parameters.
*
* \param ul_start Start address of lock range.
* \param ul_end End address of lock range.
* \param pul_actual_start Start address of the actual lock range (optional).
* \param pul_actual_end End address of the actual lock range (optional).
*
* \return 0 if successful, otherwise returns an error code.
*/
uint32_t flash_lock(uint32_t ul_start, uint32_t ul_end,
uint32_t *pul_actual_start, uint32_t *pul_actual_end)
{
Efc *p_efc;
uint32_t ul_actual_start, ul_actual_end;
uint16_t us_start_page, us_end_page;
uint32_t ul_error;
uint16_t us_num_pages_in_region =
IFLASH_LOCK_REGION_SIZE / IFLASH_PAGE_SIZE;
/* Compute actual lock range and store it */
compute_lock_range(ul_start, ul_end, &ul_actual_start, &ul_actual_end);
if (pul_actual_start != NULL) {
*pul_actual_start = ul_actual_start;
}
if (pul_actual_end != NULL) {
*pul_actual_end = ul_actual_end;
}
/* Compute page numbers */
translate_address(&p_efc, ul_actual_start, &us_start_page, 0);
translate_address(0, ul_actual_end, &us_end_page, 0);
/* Lock all pages */
while (us_start_page < us_end_page) {
ul_error = efc_perform_command(p_efc, EFC_FCMD_SLB, us_start_page);
if (ul_error) {
return ul_error;
}
us_start_page += us_num_pages_in_region;
}
return FLASH_RC_OK;
}
/**
* \brief Unlock all the regions in the given address range. The actual unlock
* range is reported through two output parameters.
*
* \param ul_start Start address of unlock range.
* \param ul_end End address of unlock range.
* \param pul_actual_start Start address of the actual unlock range (optional).
* \param pul_actual_end End address of the actual unlock range (optional).
*
* \return 0 if successful, otherwise returns an error code.
*/
uint32_t flash_unlock(uint32_t ul_start, uint32_t ul_end,
uint32_t *pul_actual_start, uint32_t *pul_actual_end)
{
Efc *p_efc;
uint32_t ul_actual_start, ul_actual_end;
uint16_t us_start_page, us_end_page;
uint32_t ul_error;
uint16_t us_num_pages_in_region =
IFLASH_LOCK_REGION_SIZE / IFLASH_PAGE_SIZE;
/* Compute actual unlock range and store it */
compute_lock_range(ul_start, ul_end, &ul_actual_start, &ul_actual_end);
if (pul_actual_start != NULL) {
*pul_actual_start = ul_actual_start;
}
if (pul_actual_end != NULL) {
*pul_actual_end = ul_actual_end;
}
/* Compute page numbers */
translate_address(&p_efc, ul_actual_start, &us_start_page, 0);
translate_address(0, ul_actual_end, &us_end_page, 0);
/* Unlock all pages */
while (us_start_page < us_end_page) {
ul_error = efc_perform_command(p_efc, EFC_FCMD_CLB,
us_start_page);
if (ul_error) {
return ul_error;
}
us_start_page += us_num_pages_in_region;
}
return FLASH_RC_OK;
}
/**
* \brief Get the number of locked regions inside the given address range.
*
* \param ul_start Start address of range
* \param ul_end End address of range.
*
* \return The number of locked regions inside the given address range.
*/
uint32_t flash_is_locked(uint32_t ul_start, uint32_t ul_end)
{
Efc *p_efc;
uint16_t us_start_page, us_end_page;
uint8_t uc_start_region, uc_end_region;
uint16_t us_num_pages_in_region;
uint32_t ul_status;
uint32_t ul_error;
uint32_t ul_num_locked_regions = 0;
uint32_t ul_count = 0;
uint32_t ul_bit = 0;
/* Compute page numbers */
translate_address(&p_efc, ul_start, &us_start_page, 0);
translate_address(0, ul_end, &us_end_page, 0);
/* Compute region numbers */
us_num_pages_in_region = IFLASH_LOCK_REGION_SIZE / IFLASH_PAGE_SIZE;
uc_start_region = us_start_page / us_num_pages_in_region;
uc_end_region = us_end_page / us_num_pages_in_region;
/* Retrieve lock status */
ul_error = efc_perform_command(p_efc, EFC_FCMD_GLB, 0);
/* Skip unrequested regions (if necessary) */
ul_status = efc_get_result(p_efc);
while (!(ul_count <= uc_start_region &&
uc_start_region < (ul_count + 32))) {
ul_status = efc_get_result(p_efc);
ul_count += 32;
}
/* Check status of each involved region */
ul_bit = uc_start_region - ul_count;
/* Number of region to check (must be > 0) */
ul_count = uc_end_region - uc_start_region + 1;
while (ul_count > 0) {
if (ul_status & (1 << (ul_bit))) {
ul_num_locked_regions++;
}
ul_count -= 1;
ul_bit += 1;
if (ul_bit == 32) {
ul_status = efc_get_result(p_efc);
ul_bit = 0;
}
}
return ul_num_locked_regions;
}
/**
* \brief Set the given GPNVM bit.
*
* \param ul_gpnvm GPNVM bit index.
*
* \return 0 if successful; otherwise returns an error code.
*/
uint32_t flash_set_gpnvm(uint32_t ul_gpnvm)
{
if (ul_gpnvm >= GPNVM_NUM_MAX) {
return FLASH_RC_INVALID;
}
if (FLASH_RC_YES == flash_is_gpnvm_set(ul_gpnvm)) {
return FLASH_RC_OK;
}
if (EFC_RC_OK == efc_perform_command(EFC, EFC_FCMD_SGPB, ul_gpnvm)) {
return FLASH_RC_OK;
}
return FLASH_RC_ERROR;
}
/**
* \brief Clear the given GPNVM bit.
*
* \param ul_gpnvm GPNVM bit index.
*
* \return 0 if successful; otherwise returns an error code.
*/
uint32_t flash_clear_gpnvm(uint32_t ul_gpnvm)
{
if (ul_gpnvm >= GPNVM_NUM_MAX) {
return FLASH_RC_INVALID;
}
if (FLASH_RC_NO == flash_is_gpnvm_set(ul_gpnvm)) {
return FLASH_RC_OK;
}
if (EFC_RC_OK == efc_perform_command(EFC, EFC_FCMD_CGPB, ul_gpnvm)) {
return FLASH_RC_OK;
}
return FLASH_RC_ERROR;
}
/**
* \brief Check if the given GPNVM bit is set or not.
*
* \param ul_gpnvm GPNVM bit index.
*
* \retval 1 If the given GPNVM bit is currently set.
* \retval 0 If the given GPNVM bit is currently cleared.
*/
uint32_t flash_is_gpnvm_set(uint32_t ul_gpnvm)
{
uint32_t ul_gpnvm_bits;
if (ul_gpnvm >= GPNVM_NUM_MAX) {
return FLASH_RC_INVALID;
}
if (EFC_RC_OK != efc_perform_command(EFC, EFC_FCMD_GGPB, 0)) {
return FLASH_RC_ERROR;
}
ul_gpnvm_bits = efc_get_result(EFC);
if (ul_gpnvm_bits & (1 << ul_gpnvm)) {
return FLASH_RC_YES;
}
return FLASH_RC_NO;
}
/**
* \brief Set security bit.
*
* \return 0 if successful; otherwise returns an error code.
*/
uint32_t flash_enable_security_bit(void)
{
return flash_set_gpnvm(0);
}
/**
* \brief Check if the security bit is set or not.
*
* \retval 1 If the security bit is currently set.
* \retval 0 If the security bit is currently cleared.
*/
uint32_t flash_is_security_bit_enabled(void)
{
return flash_is_gpnvm_set(0);
}
/**
* \brief Read the flash unique ID.
*
* \param pul_data Pointer to a data buffer to store 128-bit unique ID.
* \param ul_size Data buffer size in DWORD.
*
* \return 0 if successful; otherwise returns an error code.
*/
uint32_t flash_read_unique_id(uint32_t *pul_data, uint32_t ul_size)
{
uint32_t uid_buf[4];
uint32_t ul_idx;
if (FLASH_RC_OK != efc_perform_read_sequence(EFC, EFC_FCMD_STUI,
EFC_FCMD_SPUI, uid_buf, 4)) {
return FLASH_RC_ERROR;
}
if (ul_size > 4) {
/* Only 4 dword to store unique ID */
ul_size = 4;
}
for (ul_idx = 0; ul_idx < ul_size; ul_idx++) {
pul_data[ul_idx] = uid_buf[ul_idx];
}
return FLASH_RC_OK;
}
#if (SAM4S || SAM4E)
/**
* \brief Read the flash user signature.
*
* \param p_data Pointer to a data buffer to store 512 bytes of user signature.
* \param ul_size Data buffer size.
*
* \return 0 if successful; otherwise returns an error code.
*/
uint32_t flash_read_user_signature(uint32_t *p_data, uint32_t ul_size)
{
if (ul_size > FLASH_USER_SIG_SIZE) {
/* Only 512 byte to store unique ID */
ul_size = FLASH_USER_SIG_SIZE;
}
/* Send the read user signature commands */
if (FLASH_RC_OK != efc_perform_read_sequence(EFC, EFC_FCMD_STUS,
EFC_FCMD_SPUS, p_data, ul_size)) {
return FLASH_RC_ERROR;
}
return FLASH_RC_OK;
}
/**
* \brief Write the flash user signature.
*
* \param ul_address Write address.
* \param p_data Pointer to a data buffer to store 512 bytes of user signature.
* \param ul_size Data buffer size.
*
* \return 0 if successful; otherwise returns an error code.
*/
uint32_t flash_write_user_signature(uint32_t ul_address, const void *p_buffer,
uint32_t ul_size)
{
/* The user signature should be no longer than 512 bytes */
if (ul_size > FLASH_USER_SIG_SIZE) {
return FLASH_RC_INVALID;
}
/* Write the full page */
flash_write(ul_address, p_buffer, ul_size, 0);
/* Send the write signature command */
if (FLASH_RC_OK != efc_perform_command(EFC, EFC_FCMD_WUS, 0)) {
return FLASH_RC_ERROR;
}
return FLASH_RC_OK;
}
/**
* \brief Erase the flash user signature.
*
* \return 0 if successful; otherwise returns an error code.
*/
uint32_t flash_erase_user_signature(void)
{
/* Perform the erase user signature command */
return efc_perform_command(EFC, EFC_FCMD_EUS, 0);
}
#endif
//@}
/// @cond 0
/**INDENT-OFF**/
#ifdef __cplusplus
}
#endif
/**INDENT-ON**/
/// @endcond

151
Flash/flash_efc.h Normal file
View file

@ -0,0 +1,151 @@
/**
* \file
*
* \brief Embedded Flash service for SAM.
*
* Copyright (c) 2011-2013 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
#ifndef FLASH_H_INCLUDED
#define FLASH_H_INCLUDED
#include <Arduino.h>
#include "efc.h"
/* Internal Flash 0 base address. */
#define IFLASH_ADDR IFLASH0_ADDR
/* Internal flash page size. */
#define IFLASH_PAGE_SIZE IFLASH0_PAGE_SIZE
/* Last page start address. */
#define IFLASH_LAST_PAGE_ADDRESS (IFLASH1_ADDR + IFLASH1_SIZE - IFLASH1_PAGE_SIZE)
/// @cond 0
/**INDENT-OFF**/
#ifdef __cplusplus
extern "C" {
#endif
/**INDENT-ON**/
/// @endcond
/*! \name Flash driver return codes */
//! @{
typedef enum flash_rc {
FLASH_RC_OK = 0, //!< Operation OK
FLASH_RC_YES = 0, //!< Yes
FLASH_RC_NO = 1, //!< No
FLASH_RC_ERROR = 0x10, //!< General error
FLASH_RC_INVALID, //!< Invalid argument input
FLASH_RC_NOT_SUPPORT = 0xFFFFFFFF //!< Operation is not supported
} flash_rc_t;
//! @}
/*! \name Flash erase page num in FARG[1:0]
\note The erase page commands should be cautiouly used as EPA4/EPA32 will not
take effect according to errata and EPA8/EPA16 must module 8/16 page addresses.*/
//! @{
typedef enum flash_farg_page_num {
/* 4 of pages to be erased with EPA command*/
IFLASH_ERASE_PAGES_4=0,
/* 8 of pages to be erased with EPA command*/
IFLASH_ERASE_PAGES_8,
/* 16 of pages to be erased with EPA command*/
IFLASH_ERASE_PAGES_16,
/* 32 of pages to be erased with EPA command*/
IFLASH_ERASE_PAGES_32,
/* Parameter is not support */
IFLASH_ERASE_PAGES_INVALID,
}flash_farg_page_num_t;
//! @}
/*! \name Flash access mode */
//! @{
#define FLASH_ACCESS_MODE_128 EFC_ACCESS_MODE_128
#define FLASH_ACCESS_MODE_64 EFC_ACCESS_MODE_64
//! @}
uint32_t flash_init(uint32_t ul_mode, uint32_t ul_fws);
uint32_t flash_set_wait_state(uint32_t ul_address, uint32_t ul_fws);
uint32_t flash_set_wait_state_adaptively(uint32_t ul_address);
uint32_t flash_get_wait_state(uint32_t ul_address);
uint32_t flash_get_descriptor(uint32_t ul_address,
uint32_t *pul_flash_descriptor, uint32_t ul_size);
uint32_t flash_get_page_count(const uint32_t *pul_flash_descriptor);
uint32_t flash_get_page_count_per_region(const uint32_t *pul_flash_descriptor);
uint32_t flash_get_region_count(const uint32_t *pul_flash_descriptor);
uint32_t flash_erase_all(uint32_t ul_address);
#if SAM3SD8
uint32_t flash_erase_plane(uint32_t ul_address);
#endif
#if (SAM4S || SAM4E)
uint32_t flash_erase_page(uint32_t ul_address, uint8_t uc_page_num);
uint32_t flash_erase_sector(uint32_t ul_address);
#endif
uint32_t flash_write(uint32_t ul_address, const void *p_buffer,
uint32_t ul_size, uint32_t ul_erase_flag);
uint32_t flash_lock(uint32_t ul_start, uint32_t ul_end,
uint32_t *pul_actual_start, uint32_t *pul_actual_end);
uint32_t flash_unlock(uint32_t ul_start, uint32_t ul_end,
uint32_t *pul_actual_start, uint32_t *pul_actual_end);
uint32_t flash_is_locked(uint32_t ul_start, uint32_t ul_end);
uint32_t flash_set_gpnvm(uint32_t ul_gpnvm);
uint32_t flash_clear_gpnvm(uint32_t ul_gpnvm);
uint32_t flash_is_gpnvm_set(uint32_t ul_gpnvm);
uint32_t flash_enable_security_bit(void);
uint32_t flash_is_security_bit_enabled(void);
uint32_t flash_read_unique_id(uint32_t *pul_data, uint32_t ul_size);
#if (SAM4S || SAM4E)
uint32_t flash_read_user_signature(uint32_t *p_data, uint32_t ul_size);
uint32_t flash_write_user_signature(uint32_t ul_address, const void *p_buffer,
uint32_t ul_size);
uint32_t flash_erase_user_signature(void);
#endif
/// @cond 0
/**INDENT-OFF**/
#ifdef __cplusplus
}
#endif
/**INDENT-ON**/
/// @endcond
#endif /* FLASH_H_INCLUDED */

View file

@ -55,7 +55,7 @@ void GCodes::Init()
moveAvailable = false; moveAvailable = false;
drivesRelative = true; drivesRelative = true;
axesRelative = false; axesRelative = false;
checkEndStops = false; checkEndStops = noEndstopCheck;
gCodeLetters = GCODE_LETTERS; gCodeLetters = GCODE_LETTERS;
distanceScale = 1.0; distanceScale = 1.0;
for (int8_t i = 0; i < DRIVES - AXES; i++) for (int8_t i = 0; i < DRIVES - AXES; i++)
@ -97,7 +97,8 @@ void GCodes::doFilePrint(GCodeBuffer* gb)
{ {
if (gb->Put(b)) if (gb->Put(b))
gb->SetFinished(ActOnGcode(gb)); gb->SetFinished(ActOnGcode(gb));
} else }
else
{ {
if (gb->Put('\n')) // In case there wasn't one ending the file if (gb->Put('\n')) // In case there wasn't one ending the file
gb->SetFinished(ActOnGcode(gb)); gb->SetFinished(ActOnGcode(gb));
@ -180,7 +181,8 @@ void GCodes::Spin()
platform->GetLine()->Read(b); platform->GetLine()->Read(b);
WriteHTMLToFile(b, serialGCode); WriteHTMLToFile(b, serialGCode);
} }
} else }
else
{ {
// Otherwise just deal in general with incoming bytes from the serial interface // Otherwise just deal in general with incoming bytes from the serial interface
@ -300,7 +302,7 @@ bool GCodes::Pop()
gFeedRate = feedrateStack[stackPointer]; gFeedRate = feedrateStack[stackPointer];
moveBuffer[DRIVES] = gFeedRate; moveBuffer[DRIVES] = gFeedRate;
checkEndStops = false; checkEndStops = noEndstopCheck;
moveAvailable = true; moveAvailable = true;
return true; return true;
} }
@ -339,7 +341,8 @@ void GCodes::LoadMoveBufferFromGCode(GCodeBuffer *gb, bool doingG92, bool applyL
axisIsHomed[i] = true; // doing a G92 is equivalent to homing the axis axisIsHomed[i] = true; // doing a G92 is equivalent to homing the axis
} }
} }
} else }
else
{ {
if (gb->Seen(gCodeLetters[i])) if (gb->Seen(gCodeLetters[i]))
{ {
@ -364,7 +367,6 @@ void GCodes::LoadMoveBufferFromGCode(GCodeBuffer *gb, bool doingG92, bool applyL
moveBuffer[DRIVES] = gFeedRate; // We always set it, as Move may have modified the last one. moveBuffer[DRIVES] = gFeedRate; // We always set it, as Move may have modified the last one.
} }
// This function is called for a G Code that makes a move. // This function is called for a G Code that makes a move.
// If the Move class can't receive the move (i.e. things have to wait) // If the Move class can't receive the move (i.e. things have to wait)
// this returns false, otherwise true. // this returns false, otherwise true.
@ -381,14 +383,14 @@ bool GCodes::SetUpMove(GCodeBuffer *gb)
if (!reprap.GetMove()->GetCurrentState(moveBuffer)) if (!reprap.GetMove()->GetCurrentState(moveBuffer))
return false; return false;
checkEndStops = false; checkEndStops = noEndstopCheck;
if (gb->Seen('S')) if (gb->Seen('S'))
{ {
if (gb->GetIValue() == 1) if (gb->GetIValue() == 1)
checkEndStops = true; checkEndStops = checkAtEndstop;
} }
LoadMoveBufferFromGCode(gb, false, !checkEndStops); LoadMoveBufferFromGCode(gb, false, checkEndStops == noEndstopCheck);
moveAvailable = true; moveAvailable = true;
return true; return true;
@ -396,7 +398,7 @@ bool GCodes::SetUpMove(GCodeBuffer *gb)
// The Move class calls this function to find what to do next. // The Move class calls this function to find what to do next.
bool GCodes::ReadMove(float m[], bool& ce) bool GCodes::ReadMove(float m[], EndstopMode& ce)
{ {
if (!moveAvailable) if (!moveAvailable)
return false; return false;
@ -404,11 +406,10 @@ bool GCodes::ReadMove(float m[], bool& ce)
m[i] = moveBuffer[i]; m[i] = moveBuffer[i];
ce = checkEndStops; ce = checkEndStops;
moveAvailable = false; moveAvailable = false;
checkEndStops = false; checkEndStops = noEndstopCheck;
return true; return true;
} }
bool GCodes::DoFileCannedCycles(const char* fileName) bool GCodes::DoFileCannedCycles(const char* fileName)
{ {
// Have we started the file? // Have we started the file?
@ -484,7 +485,7 @@ bool GCodes::FileCannedCyclesReturn()
// be ignored. Recall that moveToDo[DRIVES] should contain the feedrate // be ignored. Recall that moveToDo[DRIVES] should contain the feedrate
// you want (if action[DRIVES] is true). // you want (if action[DRIVES] is true).
bool GCodes::DoCannedCycleMove(bool ce) bool GCodes::DoCannedCycleMove(EndstopMode ce)
{ {
// Is the move already running? // Is the move already running?
@ -494,7 +495,8 @@ bool GCodes::DoCannedCycleMove(bool ce)
return false; return false;
cannedCycleMoveQueued = false; cannedCycleMoveQueued = false;
return true; return true;
} else }
else
{ // No. { // No.
if (!Push()) // Wait for the RepRap to finish whatever it was doing, save it's state, and load moveBuffer[] with the current position. if (!Push()) // Wait for the RepRap to finish whatever it was doing, save it's state, and load moveBuffer[] with the current position.
return false; return false;
@ -543,7 +545,8 @@ bool GCodes::OffsetAxes(GCodeBuffer* gb)
{ {
record[drive] = moveBuffer[drive]; record[drive] = moveBuffer[drive];
moveToDo[drive] = moveBuffer[drive]; moveToDo[drive] = moveBuffer[drive];
} else }
else
{ {
record[drive] = 0.0; record[drive] = 0.0;
moveToDo[drive] = 0.0; moveToDo[drive] = 0.0;
@ -569,8 +572,7 @@ bool GCodes::OffsetAxes(GCodeBuffer* gb)
offSetSet = true; offSetSet = true;
} }
if (DoCannedCycleMove(noEndstopCheck))
if(DoCannedCycleMove(false))
{ {
//LoadMoveBufferFromArray(record); //LoadMoveBufferFromArray(record);
for (int drive = 0; drive <= DRIVES; drive++) for (int drive = 0; drive <= DRIVES; drive++)
@ -618,7 +620,6 @@ bool GCodes::DoHome(char* reply, bool& error)
return false; return false;
} }
if (homeY) if (homeY)
{ {
if (DoFileCannedCycles(HOME_Y_G)) if (DoFileCannedCycles(HOME_Y_G))
@ -631,12 +632,11 @@ bool GCodes::DoHome(char* reply, bool& error)
return false; return false;
} }
if (homeZ) if (homeZ)
{ {
if (!(axisIsHomed[X_AXIS] && axisIsHomed[Y_AXIS])) if (platform->MustHomeXYBeforeZ() && (!axisIsHomed[X_AXIS] || !axisIsHomed[Y_AXIS]))
{ {
// We can only home Z if X and Y have already been homed. Possibly this should only be if we are using an IR probe. // We can only home Z if X and Y have already been homed
strncpy(reply, "Must home X and Y before homing Z", STRING_LENGTH); strncpy(reply, "Must home X and Y before homing Z", STRING_LENGTH);
error = true; error = true;
homeZ = false; homeZ = false;
@ -654,7 +654,7 @@ bool GCodes::DoHome(char* reply, bool& error)
// Should never get here // Should never get here
checkEndStops = false; checkEndStops = noEndstopCheck;
moveAvailable = false; moveAvailable = false;
homeAxisMoveCount = 0; homeAxisMoveCount = 0;
@ -667,12 +667,12 @@ bool GCodes::DoHome(char* reply, bool& error)
bool GCodes::DoSingleZProbeAtPoint() bool GCodes::DoSingleZProbeAtPoint()
{ {
float x, y, z;
reprap.GetMove()->SetIdentityTransform(); // It doesn't matter if these are called repeatedly reprap.GetMove()->SetIdentityTransform(); // It doesn't matter if these are called repeatedly
for (int8_t drive = 0; drive <= DRIVES; drive++) for (int8_t drive = 0; drive <= DRIVES; drive++)
{
activeDrive[drive] = false; activeDrive[drive] = false;
}
switch (cannedCycleMoveCount) switch (cannedCycleMoveCount)
{ {
@ -681,9 +681,11 @@ bool GCodes::DoSingleZProbeAtPoint()
activeDrive[Z_AXIS] = true; activeDrive[Z_AXIS] = true;
moveToDo[DRIVES] = platform->HomeFeedRate(Z_AXIS); moveToDo[DRIVES] = platform->HomeFeedRate(Z_AXIS);
activeDrive[DRIVES] = true; activeDrive[DRIVES] = true;
reprap.GetMove()->SetZProbing(false); if (DoCannedCycleMove(noEndstopCheck))
if(DoCannedCycleMove(false)) {
cannedCycleMoveCount++; cannedCycleMoveCount++;
reprap.GetMove()->SetZProbing(true); // we only want to call this once
}
return false; return false;
case 1: case 1:
@ -694,8 +696,10 @@ bool GCodes::DoSingleZProbeAtPoint()
moveToDo[DRIVES] = platform->HomeFeedRate(X_AXIS); moveToDo[DRIVES] = platform->HomeFeedRate(X_AXIS);
activeDrive[DRIVES] = true; activeDrive[DRIVES] = true;
reprap.GetMove()->SetZProbing(false); reprap.GetMove()->SetZProbing(false);
if(DoCannedCycleMove(false)) if (DoCannedCycleMove(noEndstopCheck))
{
cannedCycleMoveCount++; cannedCycleMoveCount++;
}
return false; return false;
case 2: case 2:
@ -704,21 +708,40 @@ bool GCodes::DoSingleZProbeAtPoint()
moveToDo[DRIVES] = platform->HomeFeedRate(Z_AXIS); moveToDo[DRIVES] = platform->HomeFeedRate(Z_AXIS);
activeDrive[DRIVES] = true; activeDrive[DRIVES] = true;
reprap.GetMove()->SetZProbing(true); reprap.GetMove()->SetZProbing(true);
if(DoCannedCycleMove(true)) if (DoCannedCycleMove(checkApproachingEndstop))
{ {
cannedCycleMoveCount++; cannedCycleMoveCount++;
axisIsHomed[Z_AXIS] = true; // we now home the Z-axis in Move.cpp it is wasn't already
} }
return false; return false;
case 3: case 3:
{
float liveCoordinates[DRIVES + 1];
reprap.GetMove()->LiveCoordinates(liveCoordinates);
moveToDo[Z_AXIS] = liveCoordinates[Z_AXIS] - 1.0; // move down at most another 1mm
}
activeDrive[Z_AXIS] = true;
moveToDo[DRIVES] = platform->HomeFeedRate(Z_AXIS) * 0.2;
activeDrive[DRIVES] = true;
reprap.GetMove()->SetZProbing(true);
if (DoCannedCycleMove(checkAtEndstop))
{
cannedCycleMoveCount++;
axisIsHomed[Z_AXIS] = true; // we now home the Z-axis in Move.cpp it is wasn't already
platform->SetZProbing(false);
}
return false;
case 4:
moveToDo[Z_AXIS] = Z_DIVE; moveToDo[Z_AXIS] = Z_DIVE;
activeDrive[Z_AXIS] = true; activeDrive[Z_AXIS] = true;
moveToDo[DRIVES] = platform->HomeFeedRate(Z_AXIS); moveToDo[DRIVES] = platform->HomeFeedRate(Z_AXIS);
activeDrive[DRIVES] = true; activeDrive[DRIVES] = true;
reprap.GetMove()->SetZProbing(false); reprap.GetMove()->SetZProbing(false);
if(DoCannedCycleMove(false)) if (DoCannedCycleMove(noEndstopCheck))
{
cannedCycleMoveCount++; cannedCycleMoveCount++;
}
return false; return false;
default: default:
@ -728,29 +751,55 @@ bool GCodes::DoSingleZProbeAtPoint()
} }
} }
// This simply moves down till the Z probe/switch is triggered. // This simply moves down till the Z probe/switch is triggered.
bool GCodes::DoSingleZProbe() bool GCodes::DoSingleZProbe()
{ {
if(!AllMovesAreFinishedAndMoveBufferIsLoaded()) for (int8_t drive = 0; drive <= DRIVES; drive++)
{
activeDrive[drive] = false;
}
switch (cannedCycleMoveCount)
{
case 0:
platform->SetZProbing(true); // we only want to call this once
++cannedCycleMoveCount;
return false; return false;
for(int8_t drive = 0; drive <= DRIVES; drive++) case 1:
activeDrive[drive] = false;
moveToDo[Z_AXIS] = -1.1 * platform->AxisLength(Z_AXIS); moveToDo[Z_AXIS] = -1.1 * platform->AxisLength(Z_AXIS);
activeDrive[Z_AXIS] = true; activeDrive[Z_AXIS] = true;
moveToDo[DRIVES] = platform->HomeFeedRate(Z_AXIS); moveToDo[DRIVES] = platform->HomeFeedRate(Z_AXIS);
activeDrive[DRIVES] = true; activeDrive[DRIVES] = true;
if(DoCannedCycleMove(true)) if (DoCannedCycleMove(checkApproachingEndstop))
{ {
cannedCycleMoveCount = 0; cannedCycleMoveCount++;
probeCount = 0;
axisIsHomed[Z_AXIS] = true; // we have homed the Z axis
return true;
} }
return false; return false;
case 2:
{
float liveCoordinates[DRIVES + 1];
reprap.GetMove()->LiveCoordinates(liveCoordinates);
moveToDo[Z_AXIS] = liveCoordinates[Z_AXIS] - 1.0; // move down at most another 1mm
}
activeDrive[Z_AXIS] = true;
moveToDo[DRIVES] = platform->HomeFeedRate(Z_AXIS) * 0.2;
activeDrive[DRIVES] = true;
if (DoCannedCycleMove(checkAtEndstop))
{
cannedCycleMoveCount++;
probeCount = 0;
axisIsHomed[Z_AXIS] = true; // we have homed the Z axis
platform->SetZProbing(false);
}
return false;
default:
cannedCycleMoveCount = 0;
return true;
}
} }
// This sets wherever we are as the probe point P (probePointIndex) // This sets wherever we are as the probe point P (probePointIndex)
@ -800,7 +849,8 @@ bool GCodes::SetSingleZProbeAtAPosition(GCodeBuffer *gb)
reprap.GetMove()->SetProbedBedEquation(); reprap.GetMove()->SetProbedBedEquation();
} }
return true; return true;
} else }
else
{ {
if (DoSingleZProbeAtPoint()) if (DoSingleZProbeAtPoint())
{ {
@ -859,20 +909,47 @@ bool GCodes::SetPrintZProbe(GCodeBuffer* gb, char* reply)
{ {
if (!AllMovesAreFinishedAndMoveBufferIsLoaded()) if (!AllMovesAreFinishedAndMoveBufferIsLoaded())
return false; return false;
if (gb->Seen(gCodeLetters[Z_AXIS])) if (gb->Seen(gCodeLetters[Z_AXIS]))
{ {
platform->SetZProbeStopHeight(gb->GetFValue()); ZProbeParameters params;
platform->GetZProbeParameters(params);
params.height = gb->GetFValue();
if (gb->Seen('P')) if (gb->Seen('P'))
{ {
platform->SetZProbe(gb->GetIValue()); params.adcValue = gb->GetIValue();
} }
} else if (platform->GetZProbeType() == 2) if (gb->Seen('T'))
{ {
snprintf(reply, STRING_LENGTH, "%d (%d)", platform->ZProbe(), platform->ZProbeOnVal()); params.calibTemperature = gb->GetFValue();
}
else if (!PrintingAFile())
{
// Use the current bed temperature as the calibration temperature if no value was provided
params.calibTemperature = platform->GetTemperature(0);
}
if (gb->Seen('C'))
{
params.temperatureCoefficient = gb->GetFValue();
}
platform->SetZProbeParameters(params);
} }
else else
{ {
snprintf(reply, STRING_LENGTH, "%d", platform->ZProbe()); int v0 = platform->ZProbe();
int v1, v2;
switch(platform->GetZProbeSecondaryValues(v1, v2))
{
case 1:
snprintf(reply, STRING_LENGTH, "%d (%d)", v0, v1);
break;
case 2:
snprintf(reply, STRING_LENGTH, "%d (%d, %d)", v0, v1, v2);
break;
default:
snprintf(reply, STRING_LENGTH, "%d", v0);
break;
}
} }
return true; return true;
} }
@ -888,7 +965,8 @@ char* GCodes::GetCurrentCoordinates()
float liveCoordinates[DRIVES + 1]; float liveCoordinates[DRIVES + 1];
reprap.GetMove()->LiveCoordinates(liveCoordinates); reprap.GetMove()->LiveCoordinates(liveCoordinates);
snprintf(scratchString, STRING_LENGTH, "X:%f Y:%f Z:%f E:%f", liveCoordinates[X_AXIS], liveCoordinates[Y_AXIS], liveCoordinates[Z_AXIS], liveCoordinates[AXES]); snprintf(scratchString, STRING_LENGTH, "X:%f Y:%f Z:%f E:%f", liveCoordinates[X_AXIS], liveCoordinates[Y_AXIS],
liveCoordinates[Z_AXIS], liveCoordinates[AXES]);
return scratchString; return scratchString;
} }
@ -933,7 +1011,8 @@ void GCodes::WriteHTMLToFile(char b, GCodeBuffer *gb)
HandleReply(false, gb == serialGCode, r, 'M', 560, false); HandleReply(false, gb == serialGCode, r, 'M', 560, false);
return; return;
} }
} else }
else
eofStringCounter = 0; eofStringCounter = 0;
} }
@ -1037,7 +1116,6 @@ bool GCodes::SendConfigToLine()
return true; return true;
} }
// Function to handle dwell delays. Return true for // Function to handle dwell delays. Return true for
// dwell finished, false otherwise. // dwell finished, false otherwise.
@ -1137,7 +1215,8 @@ void GCodes::SetEthernetAddress(GCodeBuffer *gb, int mCode)
} }
sp++; sp++;
spp = sp; spp = sp;
}else }
else
sp++; sp++;
} }
eth[ipp] = atoi(&ipString[spp]); eth[ipp] = atoi(&ipString[spp]);
@ -1158,7 +1237,8 @@ void GCodes::SetEthernetAddress(GCodeBuffer *gb, int mCode)
default: default:
platform->Message(HOST_MESSAGE, "Setting ether parameter - dud code."); platform->Message(HOST_MESSAGE, "Setting ether parameter - dud code.");
} }
} else }
else
{ {
platform->Message(HOST_MESSAGE, "Dud IP address: "); platform->Message(HOST_MESSAGE, "Dud IP address: ");
platform->Message(HOST_MESSAGE, gb->Buffer()); platform->Message(HOST_MESSAGE, gb->Buffer());
@ -1323,7 +1403,7 @@ bool GCodes::ActOnGcode(GCodeBuffer *gb)
case 32: // Probe Z at multiple positions and generate the bed transform case 32: // Probe Z at multiple positions and generate the bed transform
if (!(axisIsHomed[X_AXIS] && axisIsHomed[Y_AXIS])) if (!(axisIsHomed[X_AXIS] && axisIsHomed[Y_AXIS]))
{ {
// We can only do a Z probe if X and Y have already been homed // We can only do bed levelling if X and Y have already been homed
strncpy(reply, "Must home X and Y before bed probing", STRING_LENGTH); strncpy(reply, "Must home X and Y before bed probing", STRING_LENGTH);
error = true; error = true;
result = true; result = true;
@ -1381,9 +1461,11 @@ bool GCodes::ActOnGcode(GCodeBuffer *gb)
case 20: // Deprecated... case 20: // Deprecated...
if (platform->Emulating() == me || platform->Emulating() == reprapFirmware) if (platform->Emulating() == me || platform->Emulating() == reprapFirmware)
snprintf(reply, STRING_LENGTH, "GCode files:\n%s", platform->GetMassStorage()->FileList(platform->GetGCodeDir(), gb == serialGCode)); snprintf(reply, STRING_LENGTH, "GCode files:\n%s",
platform->GetMassStorage()->FileList(platform->GetGCodeDir(), gb == serialGCode));
else else
snprintf(reply, STRING_LENGTH, "%s", platform->GetMassStorage()->FileList(platform->GetGCodeDir(), gb == serialGCode)); snprintf(reply, STRING_LENGTH, "%s",
platform->GetMassStorage()->FileList(platform->GetGCodeDir(), gb == serialGCode));
break; break;
case 21: // Initialise SD - ignore case 21: // Initialise SD - ignore
@ -1465,7 +1547,6 @@ bool GCodes::ActOnGcode(GCodeBuffer *gb)
(int) platform->DriveStepsPerUnit(Z_AXIS), (int) platform->DriveStepsPerUnit(AXES)); // FIXME - needs to do multiple extruders (int) platform->DriveStepsPerUnit(Z_AXIS), (int) platform->DriveStepsPerUnit(AXES)); // FIXME - needs to do multiple extruders
break; break;
case 98: case 98:
if (gb->Seen('P')) if (gb->Seen('P'))
result = DoFileCannedCycles(gb->GetString()); result = DoFileCannedCycles(gb->GetString());
@ -1520,13 +1601,15 @@ bool GCodes::ActOnGcode(GCodeBuffer *gb)
if (str != 0) if (str != 0)
{ {
strncpy(reply, str, STRING_LENGTH); strncpy(reply, str, STRING_LENGTH);
} else }
else
result = false; result = false;
} }
break; break;
case 115: // Print firmware version case 115: // Print firmware version
snprintf(reply, STRING_LENGTH, "FIRMWARE_NAME:%s FIRMWARE_VERSION:%s ELECTRONICS:%s DATE:%s", NAME, VERSION, ELECTRONICS, DATE); snprintf(reply, STRING_LENGTH, "FIRMWARE_NAME:%s FIRMWARE_VERSION:%s ELECTRONICS:%s DATE:%s", NAME, VERSION,
ELECTRONICS, DATE);
break; break;
case 109: // Deprecated case 109: // Deprecated
@ -1584,7 +1667,9 @@ bool GCodes::ActOnGcode(GCodeBuffer *gb)
if (gb->Seen(gCodeLetters[drive])) if (gb->Seen(gCodeLetters[drive]))
{ {
value = gb->GetFValue(); value = gb->GetFValue();
}else{ }
else
{
value = -1; value = -1;
} }
platform->SetAcceleration(drive, value); platform->SetAcceleration(drive, value);
@ -1812,8 +1897,6 @@ bool GCodes::ActOnGcode(GCodeBuffer *gb)
result = DoFileCannedCycles("homey.g"); result = DoFileCannedCycles("homey.g");
break; break;
case 906: // Set Motor currents case 906: // Set Motor currents
for (uint8_t i = 0; i < DRIVES; i++) for (uint8_t i = 0; i < DRIVES; i++)
{ {
@ -1884,8 +1967,6 @@ bool GCodes::ActOnGcode(GCodeBuffer *gb)
return result; return result;
} }
//************************************************************************************* //*************************************************************************************
// This class stores a single G Code and provides functions to allow it to be parsed // This class stores a single G Code and provides functions to allow it to be parsed
@ -1980,7 +2061,8 @@ bool GCodeBuffer::Put(char c)
} }
result = true; result = true;
} else }
else
{ {
if (!inComment || writingFileDirectory) if (!inComment || writingFileDirectory)
gcodePointer++; gcodePointer++;
@ -2070,7 +2152,6 @@ const char* GCodeBuffer::GetUnprecedentedString()
return result; return result;
} }
// Get an long after a G Code letter // Get an long after a G Code letter
long GCodeBuffer::GetLValue() long GCodeBuffer::GetLValue()
@ -2085,6 +2166,3 @@ long GCodeBuffer::GetLValue()
return result; return result;
} }

View file

@ -27,6 +27,11 @@ Licence: GPL
#define GCODE_LETTERS { 'X', 'Y', 'Z', 'E', 'F' } // The drives and feedrate in a GCode #define GCODE_LETTERS { 'X', 'Y', 'Z', 'E', 'F' } // The drives and feedrate in a GCode
// Enumeration to define the mode in which we check endstops
enum EndstopMode { noEndstopCheck, checkApproachingEndstop, checkAtEndstop};
// Small class to hold an individual GCode and provide functions to allow it to be parsed // Small class to hold an individual GCode and provide functions to allow it to be parsed
class GCodeBuffer class GCodeBuffer
@ -72,7 +77,7 @@ class GCodes
void Init(); void Init();
void Exit(); void Exit();
bool RunConfigurationGCodes(); bool RunConfigurationGCodes();
bool ReadMove(float* m, bool& ce); bool ReadMove(float* m, EndstopMode& ce);
void QueueFileToPrint(const char* fileName); void QueueFileToPrint(const char* fileName);
void DeleteFile(const char* fileName); void DeleteFile(const char* fileName);
bool GetProbeCoordinates(int count, float& x, float& y, float& z); bool GetProbeCoordinates(int count, float& x, float& y, float& z);
@ -86,7 +91,7 @@ class GCodes
void doFilePrint(GCodeBuffer* gb); void doFilePrint(GCodeBuffer* gb);
bool AllMovesAreFinishedAndMoveBufferIsLoaded(); bool AllMovesAreFinishedAndMoveBufferIsLoaded();
bool DoCannedCycleMove(bool ce); bool DoCannedCycleMove(EndstopMode ce);
bool DoFileCannedCycles(const char* fileName); bool DoFileCannedCycles(const char* fileName);
bool FileCannedCyclesReturn(); bool FileCannedCyclesReturn();
bool ActOnGcode(GCodeBuffer* gb); bool ActOnGcode(GCodeBuffer* gb);
@ -126,7 +131,7 @@ class GCodes
GCodeBuffer* cannedCycleGCode; GCodeBuffer* cannedCycleGCode;
bool moveAvailable; bool moveAvailable;
float moveBuffer[DRIVES+1]; // Last is feed rate float moveBuffer[DRIVES+1]; // Last is feed rate
bool checkEndStops; EndstopMode checkEndStops;
bool drivesRelative; // All except X, Y and Z bool drivesRelative; // All except X, Y and Z
bool axesRelative; // X, Y and Z bool axesRelative; // X, Y and Z
bool drivesRelativeStack[STACK]; bool drivesRelativeStack[STACK];

View file

@ -94,7 +94,7 @@ void Move::Init()
liveCoordinates[i] = 0.0; liveCoordinates[i] = 0.0;
} }
lastMove->Init(ep, platform->HomeFeedRate(Z_AXIS), platform->InstantDv(Z_AXIS), false, zMove); // Typically Z is the slowest Axis lastMove->Init(ep, platform->HomeFeedRate(Z_AXIS), platform->InstantDv(Z_AXIS), noEndstopCheck, zMove); // Typically Z is the slowest Axis
lastMove->Release(); lastMove->Release();
liveCoordinates[DRIVES] = platform->HomeFeedRate(Z_AXIS); liveCoordinates[DRIVES] = platform->HomeFeedRate(Z_AXIS);
@ -167,13 +167,11 @@ void Move::Spin()
// If there's a G Code move available, add it to the look-ahead // If there's a G Code move available, add it to the look-ahead
// ring for processing. // ring for processing.
bool checkEndStopsOnNextMove; EndstopMode checkEndStopsOnNextMove;
if(gCodes->ReadMove(nextMove, checkEndStopsOnNextMove)) if(gCodes->ReadMove(nextMove, checkEndStopsOnNextMove))
{ {
Transform(nextMove); Transform(nextMove);
currentFeedrate = nextMove[DRIVES]; // Might be G1 with just an F field
for(int8_t drive = 0; drive < DRIVES; drive++) for(int8_t drive = 0; drive < DRIVES; drive++)
nextMachineEndPoints[drive] = LookAhead::EndPointToMachine(drive, nextMove[drive]); nextMachineEndPoints[drive] = LookAhead::EndPointToMachine(drive, nextMove[drive]);
@ -183,12 +181,12 @@ void Move::Spin()
if(movementType == noMove) if(movementType == noMove)
{ {
currentFeedrate = nextMove[DRIVES]; // Might be G1 with just an F field
platform->ClassReport("Move", longWait); platform->ClassReport("Move", longWait);
return; return;
} }
// Real move - record its feedrate with it, not here. // Real move - record its feedrate with it, not here.
currentFeedrate = -1.0; currentFeedrate = -1.0;
// Promote minimum feedrates // Promote minimum feedrates
@ -294,7 +292,7 @@ bool Move::GetCurrentState(float m[])
// for the bed's plane, which means that a move is MAINLY and XY move, or MAINLY a Z move. It // for the bed's plane, which means that a move is MAINLY and XY move, or MAINLY a Z move. It
// is the main type of move that is returned. // is the main type of move that is returned.
int8_t Move::GetMovementType(long p0[], long p1[]) int8_t Move::GetMovementType(const long p0[], const long p1[]) const
{ {
int8_t result = noMove; int8_t result = noMove;
long dxy = 0; long dxy = 0;
@ -568,7 +566,7 @@ void Move::Interrupt()
} }
bool Move::LookAheadRingAdd(long ep[], float feedRate, float vv, bool ce, int8_t mt) bool Move::LookAheadRingAdd(const long ep[], float feedRate, float vv, EndstopMode ce, int8_t mt)
{ {
if(LookAheadRingFull()) if(LookAheadRingFull())
return false; return false;
@ -898,9 +896,9 @@ MovementProfile DDA::Init(LookAhead* lookAhead, float& u, float& v)
distance = 0.0; // X+Y+Z distance = 0.0; // X+Y+Z
float eDistance = 0.0; float eDistance = 0.0;
float d; float d;
long* targetPosition = myLookAheadEntry->MachineEndPoints(); const long* targetPosition = myLookAheadEntry->MachineEndPoints();
v = myLookAheadEntry->V(); v = myLookAheadEntry->V();
long* positionNow = myLookAheadEntry->Previous()->MachineEndPoints(); const long* positionNow = myLookAheadEntry->Previous()->MachineEndPoints();
u = myLookAheadEntry->Previous()->V(); u = myLookAheadEntry->Previous()->V();
checkEndStops = myLookAheadEntry->CheckEndStops(); checkEndStops = myLookAheadEntry->CheckEndStops();
@ -1004,12 +1002,19 @@ MovementProfile DDA::Init(LookAhead* lookAhead, float& u, float& v)
// If velocity requested is (almost) zero, set it to instantDv // If velocity requested is (almost) zero, set it to instantDv
if(v < instantDv) // Set change here? if(v < instantDv)
{ {
v = instantDv; v = instantDv;
result = change; result = change;
} }
// u here may be zero if we recently hit an endstop, in which case we need to set to to instantDv
if (u < instantDv)
{
u = instantDv;
result = change;
}
if(myLookAheadEntry->FeedRate() < instantDv) if(myLookAheadEntry->FeedRate() < instantDv)
myLookAheadEntry->SetFeedRate(instantDv); myLookAheadEntry->SetFeedRate(instantDv);
@ -1076,18 +1081,27 @@ void DDA::Step()
// Hit anything? // Hit anything?
if(checkEndStops) if(checkEndStops != noEndstopCheck)
{ {
EndStopHit esh = platform->Stopped(drive); switch(platform->Stopped(drive))
if(esh == lowHit)
{ {
case lowHit:
move->HitLowStop(drive, myLookAheadEntry, this); move->HitLowStop(drive, myLookAheadEntry, this);
active = false; active = false;
} break;
if(esh == highHit) case highHit:
{
move->HitHighStop(drive, myLookAheadEntry, this); move->HitHighStop(drive, myLookAheadEntry, this);
active = false; active = false;
break;
case lowNear:
if (checkEndStops == checkApproachingEndstop)
{
move->NearLowStop(drive, myLookAheadEntry, this);
active = false;
}
break;
default:
break;
} }
} }
} }
@ -1140,7 +1154,7 @@ LookAhead::LookAhead(Move* m, Platform* p, LookAhead* n)
next = n; next = n;
} }
void LookAhead::Init(long ep[], float f, float vv, bool ce, int8_t mt) void LookAhead::Init(const long ep[], float f, float vv, EndstopMode ce, int8_t mt)
{ {
v = vv; v = vv;
movementType = mt; movementType = mt;

114
Move.h
View file

@ -70,22 +70,22 @@ public:
protected: protected:
LookAhead(Move* m, Platform* p, LookAhead* n); LookAhead(Move* m, Platform* p, LookAhead* n);
void Init(long ep[], float feedRate, float vv, bool ce, int8_t mt); void Init(const long ep[], float feedRate, float vv, EndstopMode ce, int8_t mt);
LookAhead* Next(); LookAhead* Next();
LookAhead* Previous(); LookAhead* Previous();
long* MachineEndPoints(); const long* MachineEndPoints() const;
float MachineToEndPoint(int8_t drive); float MachineToEndPoint(int8_t drive);
static float MachineToEndPoint(int8_t drive, long coord); static float MachineToEndPoint(int8_t drive, long coord);
static long EndPointToMachine(int8_t drive, float coord); static long EndPointToMachine(int8_t drive, float coord);
int8_t GetMovementType(); int8_t GetMovementType() const;
float FeedRate(); float FeedRate() const;
float V(); float V() const;
void SetV(float vv); void SetV(float vv);
void SetFeedRate(float f); void SetFeedRate(float f);
int8_t Processed(); int8_t Processed() const;
void SetProcessed(MovementState ms); void SetProcessed(MovementState ms);
void SetDriveCoordinateAndZeroEndSpeed(float a, int8_t drive); void SetDriveCoordinateAndZeroEndSpeed(float a, int8_t drive);
bool CheckEndStops(); EndstopMode CheckEndStops() const;
void Release(); void Release();
private: private:
@ -97,7 +97,7 @@ private:
long endPoint[DRIVES+1]; // Should never use the +1, but safety first long endPoint[DRIVES+1]; // Should never use the +1, but safety first
int8_t movementType; int8_t movementType;
float Cosine(); float Cosine();
bool checkEndStops; EndstopMode checkEndStops;
float cosine; float cosine;
float v; // The feedrate we can actually do float v; // The feedrate we can actually do
float feedRate; // The requested feedrate float feedRate; // The requested feedrate
@ -118,9 +118,9 @@ protected:
MovementProfile Init(LookAhead* lookAhead, float& u, float& v); MovementProfile Init(LookAhead* lookAhead, float& u, float& v);
void Start(bool noTest); void Start(bool noTest);
void Step(); void Step();
bool Active(); bool Active() const;
DDA* Next(); DDA* Next();
float InstantDv(); float InstantDv() const;
private: private:
MovementProfile AccelerationCalculation(float& u, float& v, MovementProfile result); MovementProfile AccelerationCalculation(float& u, float& v, MovementProfile result);
@ -135,7 +135,7 @@ private:
bool directions[DRIVES]; bool directions[DRIVES];
long totalSteps; long totalSteps;
long stepCount; long stepCount;
bool checkEndStops; EndstopMode checkEndStops;
float timeStep; float timeStep;
float velocity; float velocity;
long stopAStep; long stopAStep;
@ -147,8 +147,6 @@ private:
}; };
class Move class Move
{ {
public: public:
@ -165,23 +163,24 @@ class Move
void ResumeMoving(); void ResumeMoving();
void DoLookAhead(); void DoLookAhead();
void HitLowStop(int8_t drive, LookAhead* la, DDA* hitDDA); void HitLowStop(int8_t drive, LookAhead* la, DDA* hitDDA);
void NearLowStop(int8_t drive, LookAhead* la, DDA* hitDDA);
void HitHighStop(int8_t drive, LookAhead* la, DDA* hitDDA); void HitHighStop(int8_t drive, LookAhead* la, DDA* hitDDA);
void SetPositions(float move[]); void SetPositions(float move[]);
void SetLiveCoordinates(float coords[]); void SetLiveCoordinates(float coords[]);
void SetXBedProbePoint(int index, float x); void SetXBedProbePoint(int index, float x);
void SetYBedProbePoint(int index, float y); void SetYBedProbePoint(int index, float y);
void SetZBedProbePoint(int index, float z); void SetZBedProbePoint(int index, float z);
float xBedProbePoint(int index); float xBedProbePoint(int index) const;
float yBedProbePoint(int index); float yBedProbePoint(int index) const;
float zBedProbePoint(int index); float zBedProbePoint(int index) const;
int NumberOfProbePoints(); int NumberOfProbePoints() const;
int NumberOfXYProbePoints(); int NumberOfXYProbePoints() const;
bool AllProbeCoordinatesSet(int index); bool AllProbeCoordinatesSet(int index) const;
bool XYProbeCoordinatesSet(int index); bool XYProbeCoordinatesSet(int index) const;
void SetZProbing(bool probing); void SetZProbing(bool probing);
void SetProbedBedEquation(); void SetProbedBedEquation();
float SecondDegreeTransformZ(float x, float y); float SecondDegreeTransformZ(float x, float y) const;
float GetLastProbedZ(); float GetLastProbedZ() const;
void SetAxisCompensation(int8_t axis, float tangent); void SetAxisCompensation(int8_t axis, float tangent);
void SetIdentityTransform(); void SetIdentityTransform();
void Transform(float move[]); void Transform(float move[]);
@ -197,16 +196,16 @@ class Move
bool DDARingAdd(LookAhead* lookAhead); bool DDARingAdd(LookAhead* lookAhead);
DDA* DDARingGet(); DDA* DDARingGet();
bool DDARingEmpty(); bool DDARingEmpty() const;
bool NoLiveMovement(); bool NoLiveMovement() const;
bool DDARingFull(); bool DDARingFull() const;
bool GetDDARingLock(); bool GetDDARingLock();
void ReleaseDDARingLock(); void ReleaseDDARingLock();
bool LookAheadRingEmpty(); bool LookAheadRingEmpty() const;
bool LookAheadRingFull(); bool LookAheadRingFull() const;
bool LookAheadRingAdd(long ep[], float feedRate, float vv, bool ce, int8_t movementType); bool LookAheadRingAdd(const long ep[], float feedRate, float vv, EndstopMode ce, int8_t movementType);
LookAhead* LookAheadRingGet(); LookAhead* LookAheadRingGet();
int8_t GetMovementType(long sp[], long ep[]); int8_t GetMovementType(const long sp[], const long ep[]) const;
float liveCoordinates[DRIVES + 1]; float liveCoordinates[DRIVES + 1];
@ -263,7 +262,7 @@ inline void LookAhead::SetV(float vv)
v = vv; v = vv;
} }
inline float LookAhead::V() inline float LookAhead::V() const
{ {
return v; return v;
} }
@ -276,7 +275,7 @@ inline float LookAhead::MachineToEndPoint(int8_t drive)
} }
inline float LookAhead::FeedRate() inline float LookAhead::FeedRate() const
{ {
return feedRate; return feedRate;
} }
@ -286,7 +285,7 @@ inline void LookAhead::SetFeedRate(float f)
feedRate = f; feedRate = f;
} }
inline int8_t LookAhead::Processed() inline int8_t LookAhead::Processed() const
{ {
return processed; return processed;
} }
@ -304,7 +303,7 @@ inline void LookAhead::Release()
processed = released; processed = released;
} }
inline bool LookAhead::CheckEndStops() inline EndstopMode LookAhead::CheckEndStops() const
{ {
return checkEndStops; return checkEndStops;
} }
@ -316,19 +315,19 @@ inline void LookAhead::SetDriveCoordinateAndZeroEndSpeed(float a, int8_t drive)
v = 0.0; v = 0.0;
} }
inline long* LookAhead::MachineEndPoints() inline const long* LookAhead::MachineEndPoints() const
{ {
return endPoint; return endPoint;
} }
inline int8_t LookAhead::GetMovementType() inline int8_t LookAhead::GetMovementType() const
{ {
return movementType; return movementType;
} }
//****************************************************************************************************** //******************************************************************************************************
inline bool DDA::Active() inline bool DDA::Active() const
{ {
return active; return active;
} }
@ -338,7 +337,7 @@ inline DDA* DDA::Next()
return next; return next;
} }
inline float DDA::InstantDv() inline float DDA::InstantDv() const
{ {
return instantDv; return instantDv;
} }
@ -346,12 +345,12 @@ inline float DDA::InstantDv()
//*************************************************************************************** //***************************************************************************************
inline bool Move::DDARingEmpty() inline bool Move::DDARingEmpty() const
{ {
return ddaRingGetPointer == ddaRingAddPointer; return ddaRingGetPointer == ddaRingAddPointer;
} }
inline bool Move::NoLiveMovement() inline bool Move::NoLiveMovement() const
{ {
if(dda != NULL) if(dda != NULL)
return false; return false;
@ -360,19 +359,19 @@ inline bool Move::NoLiveMovement()
// Leave a gap of 2 as the last Get result may still be being processed // Leave a gap of 2 as the last Get result may still be being processed
inline bool Move::DDARingFull() inline bool Move::DDARingFull() const
{ {
return ddaRingAddPointer->Next()->Next() == ddaRingGetPointer; return ddaRingAddPointer->Next()->Next() == ddaRingGetPointer;
} }
inline bool Move::LookAheadRingEmpty() inline bool Move::LookAheadRingEmpty() const
{ {
return lookAheadRingCount == 0; return lookAheadRingCount == 0;
} }
// Leave a gap of 2 as the last Get result may still be being processed // Leave a gap of 2 as the last Get result may still be being processed
inline bool Move::LookAheadRingFull() inline bool Move::LookAheadRingFull() const
{ {
if(!(lookAheadRingAddPointer->Processed() & released)) if(!(lookAheadRingAddPointer->Processed() & released))
return true; return true;
@ -459,17 +458,17 @@ inline void Move::SetZBedProbePoint(int index, float z)
probePointSet[index] |= zSet; probePointSet[index] |= zSet;
} }
inline float Move::xBedProbePoint(int index) inline float Move::xBedProbePoint(int index) const
{ {
return xBedProbePoints[index]; return xBedProbePoints[index];
} }
inline float Move::yBedProbePoint(int index) inline float Move::yBedProbePoint(int index) const
{ {
return yBedProbePoints[index]; return yBedProbePoints[index];
} }
inline float Move::zBedProbePoint(int index) inline float Move::zBedProbePoint(int index) const
{ {
return zBedProbePoints[index]; return zBedProbePoints[index];
} }
@ -479,22 +478,22 @@ inline void Move::SetZProbing(bool probing)
zProbing = probing; zProbing = probing;
} }
inline float Move::GetLastProbedZ() inline float Move::GetLastProbedZ() const
{ {
return lastZHit; return lastZHit;
} }
inline bool Move::AllProbeCoordinatesSet(int index) inline bool Move::AllProbeCoordinatesSet(int index) const
{ {
return probePointSet[index] == (xSet | ySet | zSet); return probePointSet[index] == (xSet | ySet | zSet);
} }
inline bool Move::XYProbeCoordinatesSet(int index) inline bool Move::XYProbeCoordinatesSet(int index) const
{ {
return (probePointSet[index] & xSet) && (probePointSet[index] & ySet); return (probePointSet[index] & xSet) && (probePointSet[index] & ySet);
} }
inline int Move::NumberOfProbePoints() inline int Move::NumberOfProbePoints() const
{ {
if(AllProbeCoordinatesSet(0) && AllProbeCoordinatesSet(1) && AllProbeCoordinatesSet(2)) if(AllProbeCoordinatesSet(0) && AllProbeCoordinatesSet(1) && AllProbeCoordinatesSet(2))
{ {
@ -506,7 +505,7 @@ inline int Move::NumberOfProbePoints()
return 0; return 0;
} }
inline int Move::NumberOfXYProbePoints() inline int Move::NumberOfXYProbePoints() const
{ {
if(XYProbeCoordinatesSet(0) && XYProbeCoordinatesSet(1) && XYProbeCoordinatesSet(2)) if(XYProbeCoordinatesSet(0) && XYProbeCoordinatesSet(1) && XYProbeCoordinatesSet(2))
{ {
@ -530,7 +529,7 @@ inline int Move::NumberOfXYProbePoints()
* *
* The values of x and y are transformed to put them in the interval [0, 1]. * The values of x and y are transformed to put them in the interval [0, 1].
*/ */
inline float Move::SecondDegreeTransformZ(float x, float y) inline float Move::SecondDegreeTransformZ(float x, float y) const
{ {
x = (x - xBedProbePoints[0])*xRectangle; x = (x - xBedProbePoints[0])*xRectangle;
y = (y - yBedProbePoints[0])*yRectangle; y = (y - yBedProbePoints[0])*yRectangle;
@ -564,8 +563,12 @@ inline void Move::HitLowStop(int8_t drive, LookAhead* la, DDA* hitDDA)
} else } else
{ {
// Executing G30, so set the current Z height to the value at which the end stop is triggered // Executing G30, so set the current Z height to the value at which the end stop is triggered
lastZHit = platform->ZProbeStopHeight(); // Transform it first so that the height is correct in user coordinates
hitPoint = lastZHit; float xyzPoint[3];
LiveCoordinates(xyzPoint);
xyzPoint[Z_AXIS] = lastZHit = platform->ZProbeStopHeight();
Transform(xyzPoint);
hitPoint = xyzPoint[Z_AXIS];
} }
} }
la->SetDriveCoordinateAndZeroEndSpeed(hitPoint, drive); la->SetDriveCoordinateAndZeroEndSpeed(hitPoint, drive);
@ -576,6 +579,11 @@ inline void Move::HitHighStop(int8_t drive, LookAhead* la, DDA* hitDDA)
la->SetDriveCoordinateAndZeroEndSpeed(platform->AxisLength(drive), drive); la->SetDriveCoordinateAndZeroEndSpeed(platform->AxisLength(drive), drive);
} }
inline void Move::NearLowStop(int8_t drive, LookAhead* la, DDA* hitDDA)
{
la->SetDriveCoordinateAndZeroEndSpeed(1.0, drive); // say we are at 1mm
}
inline float Move::ComputeCurrentCoordinate(int8_t drive, LookAhead* la, DDA* runningDDA) inline float Move::ComputeCurrentCoordinate(int8_t drive, LookAhead* la, DDA* runningDDA)
{ {
float previous = la->Previous()->MachineToEndPoint(drive); float previous = la->Previous()->MachineToEndPoint(drive);

View file

@ -20,6 +20,7 @@ Licence: GPL
****************************************************************************************************/ ****************************************************************************************************/
#include "RepRapFirmware.h" #include "RepRapFirmware.h"
#include "DueFlashStorage.h"
#define WINDOWED_SEND_PACKETS (2) #define WINDOWED_SEND_PACKETS (2)
@ -74,16 +75,29 @@ Platform::Platform()
void Platform::Init() void Platform::Init()
{ {
byte i; DueFlashStorage::init();
DueFlashStorage::read(nvAddress, &nvData, sizeof(nvData));
if (nvData.magic != FlashData::magicValue)
{
// Nonvolatile data has not been initialized since the firmware was last written, so set up default values
nvData.compatibility = me;
nvData.ipAddress = IP_ADDRESS;
nvData.netMask = NET_MASK;
nvData.gateWay = GATE_WAY;
compatibility = me; nvData.zProbeType = 0; // Default is to use the switch
nvData.irZProbeParameters.Init(false);
nvData.ultrasonicZProbeParameters.Init(true);
nvData.magic = FlashData::magicValue;
}
line->Init(); line->Init();
messageIndent = 0; messageIndent = 0;
massStorage->Init(); massStorage->Init();
for(i=0; i < MAX_FILES; i++) for(size_t i=0; i < MAX_FILES; i++)
files[i]->Init(); files[i]->Init();
fileStructureInitialised = true; fileStructureInitialised = true;
@ -93,10 +107,6 @@ void Platform::Init()
sysDir = SYS_DIR; sysDir = SYS_DIR;
configFile = CONFIG_FILE; configFile = CONFIG_FILE;
ipAddress = IP_ADDRESS;
netMask = NET_MASK;
gateWay = GATE_WAY;
// DRIVES // DRIVES
stepPins = STEP_PINS; stepPins = STEP_PINS;
@ -117,9 +127,6 @@ void Platform::Init()
zProbePin = Z_PROBE_PIN; zProbePin = Z_PROBE_PIN;
zProbeModulationPin = Z_PROBE_MOD_PIN; zProbeModulationPin = Z_PROBE_MOD_PIN;
zProbeType = 0; // Default is to use the switch
zProbeADValue = Z_PROBE_AD_VALUE;
zProbeStopHeight = Z_PROBE_STOP_HEIGHT;
InitZProbe(); InitZProbe();
// AXES // AXES
@ -153,7 +160,7 @@ void Platform::Init()
gcodeDir = GCODE_DIR; gcodeDir = GCODE_DIR;
tempDir = TEMP_DIR; tempDir = TEMP_DIR;
for(i = 0; i < DRIVES; i++) for(size_t i = 0; i < DRIVES; i++)
{ {
if(stepPins[i] >= 0) if(stepPins[i] >= 0)
@ -181,7 +188,7 @@ void Platform::Init()
driveEnabled[i] = false; driveEnabled[i] = false;
} }
for(i = 0; i < AXES; i++) for(size_t i = 0; i < AXES; i++)
{ {
if(lowStopPins[i] >= 0) if(lowStopPins[i] >= 0)
{ {
@ -199,7 +206,7 @@ void Platform::Init()
pinMode(heatOnPins[0], OUTPUT); pinMode(heatOnPins[0], OUTPUT);
thermistorInfRs[0] = ( thermistorInfRs[0]*exp(-thermistorBetas[0]/(25.0 - ABS_ZERO)) ); thermistorInfRs[0] = ( thermistorInfRs[0]*exp(-thermistorBetas[0]/(25.0 - ABS_ZERO)) );
for(i = 1; i < HEATERS; i++) for(size_t i = 1; i < HEATERS; i++)
{ {
if(heatOnPins[i] >= 0) if(heatOnPins[i] >= 0)
pinModeNonDue(heatOnPins[i], OUTPUT); pinModeNonDue(heatOnPins[i], OUTPUT);
@ -227,18 +234,261 @@ void Platform::InitZProbe()
zProbeCount = 0; zProbeCount = 0;
zProbeOnSum = 0; zProbeOnSum = 0;
zProbeOffSum = 0; zProbeOffSum = 0;
zProbeMinSum = 0;
zProbeWorking = false;
for (uint8_t i = 0; i < NumZProbeReadingsAveraged; ++i) for (uint8_t i = 0; i < NumZProbeReadingsAveraged; ++i)
{ {
zProbeReadings[i] = 0; zProbeReadings[i] = 0;
} }
if (zProbeType != 0) if (nvData.zProbeType == 1 || nvData.zProbeType == 2)
{ {
pinMode(zProbeModulationPin, OUTPUT); pinMode(zProbeModulationPin, OUTPUT);
digitalWrite(zProbeModulationPin, HIGH); // enable the IR LED digitalWrite(zProbeModulationPin, HIGH); // enable the IR LED
SetZProbing(false);
} }
} }
int Platform::GetRawZHeight() const
{
return (nvData.zProbeType != 0) ? analogRead(zProbePin) : 0;
}
int Platform::ZProbe() const
{
switch(nvData.zProbeType)
{
case 1: // simple IR sensor
return (int)((zProbeOnSum + zProbeOffSum)/NumZProbeReadingsAveraged);
case 2: // modulated IR sensor
return (int)((zProbeOnSum - zProbeOffSum)/(NumZProbeReadingsAveraged/2));
case 3: // ultrasonic sensor
return (int)((zProbeOnSum + zProbeOffSum - zProbeMinSum)/(NumZProbeReadingsAveraged/2));
default:
return 0;
}
}
int Platform::GetZProbeSecondaryValues(int& v1, int& v2) const
{
switch(nvData.zProbeType)
{
case 2: // modulated IR sensor
v1 = zProbeOnSum/(NumZProbeReadingsAveraged/2); // pass back the reading with IR turned on
return 1;
case 3: // ultrasonic
v1 = (zProbeOnSum + zProbeOffSum)/NumZProbeReadingsAveraged; // pass back the raw reading
v2 = zProbeMinSum/NumZProbeReadingsAveraged; // pass back the minimum found
return 2;
default:
return 0;
}
}
int Platform::GetZProbeType() const
{
return nvData.zProbeType;
}
void Platform::PollZHeight()
{
uint16_t currentReading = GetRawZHeight();
if (nvData.zProbeType == 2)
{
// Reverse the modulation, ready for next time
digitalWrite(zProbeModulationPin, (zProbeCount & 1) ? HIGH : LOW);
}
if (zProbeCount & 1)
{
zProbeOffSum = zProbeOffSum - zProbeReadings[zProbeCount] + currentReading;
}
else
{
zProbeOnSum = zProbeOnSum - zProbeReadings[zProbeCount] + currentReading;
}
zProbeReadings[zProbeCount] = currentReading;
++zProbeCount;
if (zProbeCount == NumZProbeReadingsAveraged)
{
zProbeCount = 0;
if (!zProbeWorking)
{
zProbeWorking = true;
if (nvData.zProbeType == 3)
{
zProbeMinSum = zProbeOnSum + zProbeOffSum;
}
}
}
if (nvData.zProbeType == 3 && zProbeWorking)
{
// Update the minimum value seen from the ultrasonic sensor
long temp = zProbeOnSum + zProbeOffSum;
if (temp < zProbeMinSum)
{
zProbeMinSum = temp;
}
}
}
float Platform::ZProbeStopHeight() const
{
switch(nvData.zProbeType)
{
case 1:
case 2:
return nvData.irZProbeParameters.GetStopHeight(GetTemperature(0));
case 3:
return nvData.ultrasonicZProbeParameters.GetStopHeight(GetTemperature(0));
default:
return 0;
}
}
void Platform::SetZProbeType(int pt)
{
int newZProbeType = (pt >= 0 && pt <= 3) ? pt : 0;
if (newZProbeType != nvData.zProbeType)
{
nvData.zProbeType = newZProbeType;
WriteNvData();
}
InitZProbe();
}
bool Platform::GetZProbeParameters(struct ZProbeParameters& params) const
{
switch (nvData.zProbeType)
{
case 1:
case 2:
params = nvData.irZProbeParameters;
return true;
case 3:
params = nvData.ultrasonicZProbeParameters;
return true;
default:
return false;
}
}
bool Platform::SetZProbeParameters(const struct ZProbeParameters& params)
{
switch (nvData.zProbeType)
{
case 1:
case 2:
if (nvData.irZProbeParameters != params)
{
nvData.irZProbeParameters = params;
WriteNvData();
}
return true;
case 3:
if (nvData.ultrasonicZProbeParameters != params)
{
nvData.ultrasonicZProbeParameters = params;
WriteNvData();
}
return true;
default:
return false;
}
}
// Return true if we must hoe X and U before we home Z (i.e. we are using an IR probe)
bool Platform::MustHomeXYBeforeZ() const
{
return nvData.zProbeType == 1 || nvData.zProbeType == 2;
}
void Platform::WriteNvData()
{
DueFlashStorage::write(nvAddress, &nvData, sizeof(nvData));
}
void Platform::SetZProbing(bool starting)
{
if (starting && nvData.zProbeType == 3)
{
zProbeMinSum = zProbeOnSum + zProbeOffSum; //look for a new minimum
// Tell the ultrasonic sensor we are starting or have completed a z-probe
//digitalWrite(zProbeModulationPin, (starting) ? LOW : HIGH);
}
}
float Platform::Time()
{
unsigned long now = micros();
if(now < lastTimeCall) // Has timer overflowed?
addToTime += ((float)ULONG_MAX)*TIME_FROM_REPRAP;
lastTimeCall = now;
return addToTime + TIME_FROM_REPRAP*(float)now;
}
void Platform::Exit()
{
Message(HOST_MESSAGE, "Platform class exited.\n");
active = false;
}
Compatibility Platform::Emulating() const
{
if(nvData.compatibility == reprapFirmware)
return me;
return nvData.compatibility;
}
void Platform::SetEmulating(Compatibility c)
{
if(c != me && c != reprapFirmware && c != marlin)
{
Message(HOST_MESSAGE, "Attempt to emulate unsupported firmware.\n");
return;
}
if(c == reprapFirmware)
{
c = me;
}
if (nvData.compatibility != c)
{
nvData.compatibility = c;
WriteNvData();
}
}
void Platform::UpdateNetworkAddress(byte dst[4], const byte src[4])
{
bool changed = false;
for(uint8_t i = 0; i < 4; i++)
{
if(dst[i] != src[i])
{
dst[i] = src[i];
changed = true;
}
}
if (changed)
{
WriteNvData();
}
}
void Platform::SetIPAddress(byte ip[])
{
UpdateNetworkAddress(nvData.ipAddress, ip);
}
void Platform::SetGateWay(byte gw[])
{
UpdateNetworkAddress(nvData.gateWay, gw);
}
void Platform::SetNetMask(byte nm[])
{
UpdateNetworkAddress(nvData.netMask, nm);
}
void Platform::StartNetwork() void Platform::StartNetwork()
{ {
network->Init(); network->Init();
@ -360,7 +610,7 @@ void Platform::ClassReport(char* className, float &lastTime)
// Result is in degrees celsius // Result is in degrees celsius
float Platform::GetTemperature(int8_t heater) float Platform::GetTemperature(int8_t heater) const
{ {
// If the ADC reading is N then for an ideal ADC, the input voltage is at least N/(AD_RANGE + 1) and less than (N + 1)/(AD_RANGE + 1), times the analog reference. // If the ADC reading is N then for an ideal ADC, the input voltage is at least N/(AD_RANGE + 1) and less than (N + 1)/(AD_RANGE + 1), times the analog reference.
// So we add 0.5 to to the reading to get a better estimate of the input. But first, recognise the special case of thermistor disconnected. // So we add 0.5 to to the reading to get a better estimate of the input. But first, recognise the special case of thermistor disconnected.
@ -394,12 +644,18 @@ void Platform::SetHeater(int8_t heater, const float& power)
EndStopHit Platform::Stopped(int8_t drive) EndStopHit Platform::Stopped(int8_t drive)
{ {
if(zProbeType > 0) if(nvData.zProbeType > 0)
{ // Z probe is used for both X and Z. { // Z probe is used for both X and Z.
if(drive != Y_AXIS) if(drive != Y_AXIS)
{ {
if(ZProbe() > zProbeADValue) int zProbeVal = ZProbe();
int zProbeADValue = (nvData.zProbeType == 3)
? nvData.ultrasonicZProbeParameters.adcValue
: nvData.irZProbeParameters.adcValue;
if(zProbeVal >= zProbeADValue)
return lowHit; return lowHit;
else if (zProbeVal * 10 >= zProbeADValue * 9) // if we are at/above 90% of the target value
return lowNear;
else else
return noStop; return noStop;
} }

View file

@ -203,7 +203,8 @@ enum EndStopHit
{ {
noStop = 0, // no enstop hit noStop = 0, // no enstop hit
lowHit = 1, // low switch hit, or Z-probe in use and above threshold lowHit = 1, // low switch hit, or Z-probe in use and above threshold
highHit = 2 // high stop hit highHit = 2, // high stop hit
lowNear = 3 // approaching Z-probe threshold
}; };
/***************************************************************************************************/ /***************************************************************************************************/
@ -410,6 +411,44 @@ private:
/***************************************************************************************************************/ /***************************************************************************************************************/
// Struct for holding Z probe parameters
struct ZProbeParameters
{
int adcValue; // the target ADC value
float height; // the nozzle height at which the target ADC value is returned
float calibTemperature; // the temperature at which we did the calibration
float temperatureCoefficient; // the variation of height with bed temperature
void Init(bool isUltrasonic)
{
adcValue = Z_PROBE_AD_VALUE;
height = Z_PROBE_STOP_HEIGHT;
calibTemperature = 20.0;
temperatureCoefficient = (isUltrasonic)
? 0.007575 // speed of sound correction assuming half wavelength between sensor and bed
: 0.0; // no default temperature correction for IR sensor
}
float GetStopHeight(float temperature) const
{
return ((temperature - calibTemperature) * temperatureCoefficient) + height;
}
bool operator==(const ZProbeParameters& other) const
{
return adcValue == other.adcValue
&& height == other.height
&& calibTemperature == other.calibTemperature
&& temperatureCoefficient == other.temperatureCoefficient;
}
bool operator!=(const ZProbeParameters& other) const
{
return !operator==(other);
}
};
// The main class that defines the RepRap machine for the benefit of the other classes // The main class that defines the RepRap machine for the benefit of the other classes
class Platform class Platform
@ -495,17 +534,21 @@ class Platform
void SetAxisLength(int8_t axis, float value); void SetAxisLength(int8_t axis, float value);
bool HighStopButNotLow(int8_t axis) const; bool HighStopButNotLow(int8_t axis) const;
// Z probe
float ZProbeStopHeight() const; float ZProbeStopHeight() const;
void SetZProbeStopHeight(float z);
int ZProbe() const; int ZProbe() const;
int ZProbeOnVal() const; int GetZProbeSecondaryValues(int& v1, int& v2) const;
void SetZProbe(int iZ);
void SetZProbeType(int iZ); void SetZProbeType(int iZ);
int GetZProbeType() const; int GetZProbeType() const;
void SetZProbing(bool starting);
bool GetZProbeParameters(struct ZProbeParameters& params) const;
bool SetZProbeParameters(const struct ZProbeParameters& params);
bool MustHomeXYBeforeZ() const;
// Heat and temperature // Heat and temperature
float GetTemperature(int8_t heater); // Result is in degrees celsius float GetTemperature(int8_t heater) const; // Result is in degrees Celsius
void SetHeater(int8_t heater, const float& power); // power is a fraction in [0,1] void SetHeater(int8_t heater, const float& power); // power is a fraction in [0,1]
float PidKp(int8_t heater) const; float PidKp(int8_t heater) const;
float PidKi(int8_t heater) const; float PidKi(int8_t heater) const;
@ -526,6 +569,27 @@ class Platform
private: private:
// This is the structure used to hold out non-volatile data.
// The SAM3X doesn't have EEPROM so we save the data to flash. This unfortunately means that it gets cleared
// every time we reprogram the firmware. So there is no need to cater for writing one version of this
// struct and reading back another.
struct FlashData
{
static const uint16_t magicValue = 0x59B2; // value we use to recognise that he flash data has been written
uint16_t magic;
ZProbeParameters irZProbeParameters; // Z probe values for the IR sensor
ZProbeParameters ultrasonicZProbeParameters; // Z probe values for the IR sensor
int zProbeType; // the type of Z probe we are using
byte ipAddress[4];
byte netMask[4];
byte gateWay[4];
Compatibility compatibility;
};
static const uint32_t nvAddress = 0; // address in flash where we store the nonvolatile data
FlashData nvData;
float lastTime; float lastTime;
float longWait; float longWait;
float addToTime; float addToTime;
@ -533,8 +597,6 @@ class Platform
bool active; bool active;
Compatibility compatibility;
void InitialiseInterrupts(); void InitialiseInterrupts();
int GetRawZHeight() const; int GetRawZHeight() const;
@ -555,29 +617,25 @@ class Platform
int8_t potWipes[DRIVES]; int8_t potWipes[DRIVES];
float senseResistor; float senseResistor;
float maxStepperDigipotVoltage; float maxStepperDigipotVoltage;
// float zProbeGradient;
// float zProbeConstant;
int8_t zProbePin; int8_t zProbePin;
int8_t zProbeModulationPin; int8_t zProbeModulationPin;
int8_t zProbeType;
uint8_t zProbeCount; uint8_t zProbeCount;
long zProbeOnSum; // sum of readings taken when IR led is on long zProbeOnSum; // sum of readings taken when IR led is on
long zProbeOffSum; // sum of readings taken when IR led is on long zProbeOffSum; // sum of readings taken when IR led is on
long zProbeMinSum; // minimum zprobe value seen, used with ultrasonic probe
uint16_t zProbeReadings[NumZProbeReadingsAveraged]; uint16_t zProbeReadings[NumZProbeReadingsAveraged];
int zProbeADValue; bool zProbeWorking;
float zProbeStopHeight;
// AXES // AXES
void InitZProbe(); void InitZProbe();
void PollZHeight(); void PollZHeight();
void UpdateNetworkAddress(byte dst[4], const byte src[4]);
void WriteNvData();
float axisLengths[AXES]; float axisLengths[AXES];
float homeFeedrates[AXES]; float homeFeedrates[AXES];
float headOffsets[AXES]; // FIXME - needs a 2D array float headOffsets[AXES]; // FIXME - needs a 2D array
// bool zProbeStarting;
// float zProbeHigh;
// float zProbeLow;
// HEATERS - Bed is assumed to be the first // HEATERS - Bed is assumed to be the first
@ -612,61 +670,19 @@ class Platform
MassStorage* massStorage; MassStorage* massStorage;
FileStore* files[MAX_FILES]; FileStore* files[MAX_FILES];
bool fileStructureInitialised; bool fileStructureInitialised;
//bool* inUse;
char* webDir; char* webDir;
char* gcodeDir; char* gcodeDir;
char* sysDir; char* sysDir;
char* tempDir; char* tempDir;
char* configFile; char* configFile;
//byte* buf[MAX_FILES];
//int bPointer[MAX_FILES];
//char fileList[FILE_LIST_LENGTH];
//char scratchString[STRING_LENGTH];
// Network connection // Network connection
Network* network; Network* network;
byte ipAddress[4];
byte netMask[4];
byte gateWay[4];
}; };
// Seconds // Seconds
inline float Platform::Time()
{
unsigned long now = micros();
if(now < lastTimeCall) // Has timer overflowed?
addToTime += ((float)ULONG_MAX)*TIME_FROM_REPRAP;
lastTimeCall = now;
return addToTime + TIME_FROM_REPRAP*(float)now;
}
inline void Platform::Exit()
{
Message(HOST_MESSAGE, "Platform class exited.\n");
active = false;
}
inline Compatibility Platform::Emulating() const
{
if(compatibility == reprapFirmware)
return me;
return compatibility;
}
inline void Platform::SetEmulating(Compatibility c)
{
if(c != me && c != reprapFirmware && c != marlin)
{
Message(HOST_MESSAGE, "Attempt to emulate unsupported firmware.\n");
return;
}
if(c == reprapFirmware)
c = me;
compatibility = c;
}
// Where the htm etc files are // Where the htm etc files are
inline const char* Platform::GetWebDir() const inline const char* Platform::GetWebDir() const
@ -824,76 +840,6 @@ inline void Platform::SetMaxFeedrate(int8_t drive, float value)
maxFeedrates[drive] = value; maxFeedrates[drive] = value;
} }
inline int Platform::GetRawZHeight() const
{
return (zProbeType != 0) ? analogRead(zProbePin) : 0;
}
inline int Platform::ZProbe() const
{
return (zProbeType == 1)
? (zProbeOnSum + zProbeOffSum)/NumZProbeReadingsAveraged // non-modulated mode
: (zProbeType == 2)
? (zProbeOnSum - zProbeOffSum)/(NumZProbeReadingsAveraged/2) // modulated mode
: 0; // z-probe disabled
}
inline int Platform::ZProbeOnVal() const
{
return (zProbeType == 1)
? (zProbeOnSum + zProbeOffSum)/NumZProbeReadingsAveraged
: (zProbeType == 2)
? zProbeOnSum/(NumZProbeReadingsAveraged/2)
: 0;
}
inline float Platform::ZProbeStopHeight() const
{
return zProbeStopHeight;
}
inline void Platform::SetZProbeStopHeight(float z)
{
zProbeStopHeight = z;
}
inline void Platform::SetZProbe(int iZ)
{
zProbeADValue = iZ;
}
inline void Platform::SetZProbeType(int pt)
{
zProbeType = (pt >= 0 && pt <= 2) ? pt : 0;
InitZProbe();
}
inline int Platform::GetZProbeType() const
{
return zProbeType;
}
inline void Platform::PollZHeight()
{
uint16_t currentReading = GetRawZHeight();
if (zProbeType == 2)
{
// Reverse the modulation, ready for next time
digitalWrite(zProbeModulationPin, (zProbeCount & 1) ? HIGH : LOW);
}
if (zProbeCount & 1)
{
zProbeOffSum = zProbeOffSum - zProbeReadings[zProbeCount] + currentReading;
}
else
{
zProbeOnSum = zProbeOnSum - zProbeReadings[zProbeCount] + currentReading;
}
zProbeReadings[zProbeCount] = currentReading;
zProbeCount = (zProbeCount + 1) % NumZProbeReadingsAveraged;
}
//******************************************************************************************************** //********************************************************************************************************
// Drive the RepRap machine - Heat and temperature // Drive the RepRap machine - Heat and temperature
@ -990,37 +936,19 @@ inline Network* Platform::GetNetwork()
return network; return network;
} }
inline void Platform::SetIPAddress(byte ip[])
{
for(uint8_t i = 0; i < 4; i++)
ipAddress[i] = ip[i];
}
inline const byte* Platform::IPAddress() const inline const byte* Platform::IPAddress() const
{ {
return ipAddress; return nvData.ipAddress;
}
inline void Platform::SetNetMask(byte nm[])
{
for(uint8_t i = 0; i < 4; i++)
netMask[i] = nm[i];
} }
inline const byte* Platform::NetMask() const inline const byte* Platform::NetMask() const
{ {
return netMask; return nvData.netMask;
}
inline void Platform::SetGateWay(byte gw[])
{
for(uint8_t i = 0; i < 4; i++)
gateWay[i] = gw[i];
} }
inline const byte* Platform::GateWay() const inline const byte* Platform::GateWay() const
{ {
return gateWay; return nvData.gateWay;
} }
inline Line* Platform::GetLine() const inline Line* Platform::GetLine() const

Binary file not shown.

View file

@ -440,13 +440,19 @@ void Webserver::GetJsonResponse(const char* request)
// Send the Z probe value // Send the Z probe value
char scratch[SHORT_STRING_LENGTH+1]; char scratch[SHORT_STRING_LENGTH+1];
scratch[SHORT_STRING_LENGTH] = 0; scratch[SHORT_STRING_LENGTH] = 0;
if (platform->GetZProbeType() == 2) int v0 = platform->ZProbe();
int v1, v2;
switch(platform->GetZProbeSecondaryValues(v1, v2))
{ {
snprintf(scratch, SHORT_STRING_LENGTH, ",\"probe\":\"%d (%d)\"", (int)platform->ZProbe(), platform->ZProbeOnVal()); case 1:
} snprintf(scratch, SHORT_STRING_LENGTH, ",\"probe\":\"%d (%d)\"", v0, v1);
else break;
{ case 2:
snprintf(scratch, SHORT_STRING_LENGTH, ",\"probe\":\"%d\"", (int)platform->ZProbe()); snprintf(scratch, SHORT_STRING_LENGTH, ",\"probe\":\"%d (%d, %d)\"", v0, v1, v2);
break;
default:
snprintf(scratch, SHORT_STRING_LENGTH, ",\"probe\":\"%d\"", v0);
break;
} }
strncat(jsonResponse, scratch, STRING_LENGTH); strncat(jsonResponse, scratch, STRING_LENGTH);