This repository has been archived on 2025-02-01. You can view files and clone it, but cannot push or open issues or pull requests.
reprapfirmware-dc42/Flash/flash_efc.cpp
David Crocker 92c17dede2 Various changes relating to zprobe and non-volatile data
1. Z-probing is now done in two stages: a fast stage at the configured
home feed rate until within 10% of the target value, then a slow stage
at 20% of that feed rate.
2. Provisional support for ultrasonic Z-probe.
3. Added calibration temperature and height temperature coefficient to Z
probe parameters.
4. Z-probe parameters and Z-probe type are now saved to flash memory so
that they survive power-off and reset cycles. Separate parameters are
retained for IR and ultrasonic probes in case both are fitted.
5. Fixed issue with doing slow Z-moves immediately after Z-homing or
probing.
2014-02-24 14:17:11 +00:00

916 lines
23 KiB
C++

/**
* \file
*
* \brief Embedded Flash service for SAM.
*
* Copyright (c) 2011-2013 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
#include <string.h>
#include <assert.h>
#include "flash_efc.h"
/// @cond 0
/**INDENT-OFF**/
#ifdef __cplusplus
extern "C" {
#endif
/**INDENT-ON**/
/// @endcond
/**
* \defgroup sam_services_flash_efc_group Embedded Flash Service
*
* The Embedded Flash service provides functions for internal flash operations.
*
* @{
*/
#if SAM4E
/* User signature size */
# define FLASH_USER_SIG_SIZE (512)
#endif
#if SAM4S
/* Internal Flash Controller 0. */
# define EFC EFC0
/* User signature size */
# define FLASH_USER_SIG_SIZE (512)
/* Internal Flash 0 base address. */
# define IFLASH_ADDR IFLASH0_ADDR
/* Internal flash page size. */
# define IFLASH_PAGE_SIZE IFLASH0_PAGE_SIZE
/* Internal flash lock region size. */
# define IFLASH_LOCK_REGION_SIZE IFLASH0_LOCK_REGION_SIZE
#endif
/* Internal Flash Controller 0. */
# define EFC EFC0
/* The max GPNVM number. */
# define GPNVM_NUM_MAX 3
/* Internal Flash 0 base address. */
# define IFLASH_ADDR IFLASH0_ADDR
/* Internal flash page size. */
# define IFLASH_PAGE_SIZE IFLASH0_PAGE_SIZE
/* Internal flash lock region size. */
# define IFLASH_LOCK_REGION_SIZE IFLASH0_LOCK_REGION_SIZE
/* Flash page buffer for alignment */
static uint32_t gs_ul_page_buffer[IFLASH_PAGE_SIZE / sizeof(uint32_t)];
/**
* \brief Translate the given flash address to page and offset values.
* \note pus_page and pus_offset must not be null in order to store the
* corresponding values.
*
* \param pp_efc Pointer to an EFC pointer.
* \param ul_addr Address to translate.
* \param pus_page The first page accessed.
* \param pus_offset Byte offset in the first page.
*/
static void translate_address(Efc **pp_efc, uint32_t ul_addr,
uint16_t *pus_page, uint16_t *pus_offset)
{
Efc *p_efc;
uint16_t us_page;
uint16_t us_offset;
if (ul_addr >= IFLASH1_ADDR) {
p_efc = EFC1;
us_page = (ul_addr - IFLASH1_ADDR) / IFLASH1_PAGE_SIZE;
us_offset = (ul_addr - IFLASH1_ADDR) % IFLASH1_PAGE_SIZE;
} else {
p_efc = EFC0;
us_page = (ul_addr - IFLASH0_ADDR) / IFLASH0_PAGE_SIZE;
us_offset = (ul_addr - IFLASH0_ADDR) % IFLASH0_PAGE_SIZE;
}
/* Store values */
if (pp_efc) {
*pp_efc = p_efc;
}
if (pus_page) {
*pus_page = us_page;
}
if (pus_offset) {
*pus_offset = us_offset;
}
}
/**
* \brief Compute the address of a flash by the given page and offset.
*
* \param p_efc Pointer to an EFC instance.
* \param us_page Page number.
* \param us_offset Byte offset inside page.
* \param pul_addr Computed address (optional).
*/
static void compute_address(Efc *p_efc, uint16_t us_page, uint16_t us_offset,
uint32_t *pul_addr)
{
uint32_t ul_addr;
/* Dual bank flash */
#ifdef EFC1
/* Compute address */
ul_addr = (p_efc == EFC0) ?
IFLASH0_ADDR + us_page * IFLASH_PAGE_SIZE + us_offset :
IFLASH1_ADDR + us_page * IFLASH_PAGE_SIZE + us_offset;
/* One bank flash */
#else
/* avoid Cppcheck Warning */
UNUSED(p_efc);
/* Compute address */
ul_addr = IFLASH_ADDR + us_page * IFLASH_PAGE_SIZE + us_offset;
#endif
/* Store result */
if (pul_addr != NULL) {
*pul_addr = ul_addr;
}
}
/**
* \brief Compute the lock range associated with the given address range.
*
* \param ul_start Start address of lock range.
* \param ul_end End address of lock range.
* \param pul_actual_start Actual start address of lock range.
* \param pul_actual_end Actual end address of lock range.
*/
static void compute_lock_range(uint32_t ul_start, uint32_t ul_end,
uint32_t *pul_actual_start, uint32_t *pul_actual_end)
{
uint32_t ul_actual_start, ul_actual_end;
ul_actual_start = ul_start - (ul_start % IFLASH_LOCK_REGION_SIZE);
ul_actual_end = ul_end - (ul_end % IFLASH_LOCK_REGION_SIZE) +
IFLASH_LOCK_REGION_SIZE - 1;
if (pul_actual_start) {
*pul_actual_start = ul_actual_start;
}
if (pul_actual_end) {
*pul_actual_end = ul_actual_end;
}
}
/**
* \brief Initialize the flash service.
*
* \param ul_mode FLASH_ACCESS_MODE_128 or FLASH_ACCESS_MODE_64.
* \param ul_fws The number of wait states in cycle (no shift).
*
* \return 0 if successful; otherwise returns an error code.
*/
uint32_t flash_init(uint32_t ul_mode, uint32_t ul_fws)
{
efc_init(EFC, ul_mode, ul_fws);
#ifdef EFC1
efc_init(EFC1, ul_mode, ul_fws);
#endif
return FLASH_RC_OK;
}
/**
* \brief Set flash wait state.
*
* \param ul_address Flash bank start address.
* \param ul_fws The number of wait states in cycle (no shift).
*
* \return 0 if successful; otherwise returns an error code.
*/
uint32_t flash_set_wait_state(uint32_t ul_address, uint32_t ul_fws)
{
Efc *p_efc;
translate_address(&p_efc, ul_address, NULL, NULL);
efc_set_wait_state(p_efc, ul_fws);
return FLASH_RC_OK;
}
/**
* \brief Set flash wait state.
*
* \param ul_address Flash bank start address.
* \param ul_fws The number of wait states in cycle (no shift).
*
* \return 0 if successful; otherwise returns an error code.
*/
uint32_t flash_set_wait_state_adaptively(uint32_t ul_address)
{
Efc *p_efc;
uint32_t clock = SystemCoreClock;
translate_address(&p_efc, ul_address, NULL, NULL);
/* Set FWS for embedded Flash access according to operating frequency */
if (clock < CHIP_FREQ_FWS_0) {
efc_set_wait_state(p_efc, 0);
} else if (clock < CHIP_FREQ_FWS_1) {
efc_set_wait_state(p_efc, 1);
} else if (clock < CHIP_FREQ_FWS_2) {
efc_set_wait_state(p_efc, 2);
} else if (clock < CHIP_FREQ_FWS_3) {
efc_set_wait_state(p_efc, 3);
} else {
efc_set_wait_state(p_efc, 4);
}
return FLASH_RC_OK;
}
/**
* \brief Get flash wait state.
*
* \param ul_address Flash bank start address.
*
* \return The number of wait states in cycle (no shift).
*/
uint32_t flash_get_wait_state(uint32_t ul_address)
{
Efc *p_efc;
translate_address(&p_efc, ul_address, NULL, NULL);
return efc_get_wait_state(p_efc);
}
/**
* \brief Get flash descriptor.
*
* \param ul_address Flash bank start address.
* \param pul_flash_descriptor Pointer to a data buffer to store flash descriptor.
* \param ul_size Data buffer size in DWORD.
*
* \return The actual descriptor length.
*/
uint32_t flash_get_descriptor(uint32_t ul_address,
uint32_t *pul_flash_descriptor, uint32_t ul_size)
{
Efc *p_efc;
uint32_t ul_tmp;
uint32_t ul_cnt;
translate_address(&p_efc, ul_address, NULL, NULL);
/* Command fails */
if (FLASH_RC_OK != efc_perform_command(p_efc, EFC_FCMD_GETD, 0)) {
return 0;
} else {
/* Read until no result */
for (ul_cnt = 0;; ul_cnt++) {
ul_tmp = efc_get_result(p_efc);
if ((ul_size > ul_cnt) && (ul_tmp != 0)) {
*pul_flash_descriptor++ = ul_tmp;
} else {
break;
}
}
}
return ul_cnt;
}
/**
* \brief Get flash total page count for the specified bank.
*
* \note The flash descriptor must be fetched from flash_get_descriptor
* function first.
*
* \param pul_flash_descriptor Pointer to a flash descriptor.
*
* \return The flash total page count.
*/
uint32_t flash_get_page_count(const uint32_t *pul_flash_descriptor)
{
return (pul_flash_descriptor[1] / pul_flash_descriptor[2]);
}
/**
* \brief Get flash page count per region (plane) for the specified bank.
*
* \note The flash descriptor must be fetched from flash_get_descriptor
* function first.
*
* \param pul_flash_descriptor Pointer to a flash descriptor.
*
* \return The flash page count per region (plane).
*/
uint32_t flash_get_page_count_per_region(const uint32_t *pul_flash_descriptor)
{
return (pul_flash_descriptor[4] / pul_flash_descriptor[2]);
}
/**
* \brief Get flash region (plane) count for the specified bank.
*
* \note The flash descriptor must be fetched from flash_get_descriptor
* function first.
*
* \param pul_flash_descriptor Pointer to a flash descriptor.
*
* \return The flash region (plane) count.
*/
uint32_t flash_get_region_count(const uint32_t *pul_flash_descriptor)
{
return (pul_flash_descriptor[3]);
}
/**
* \brief Erase the entire flash.
*
* \note Only the flash bank including ul_address will be erased. If there are
* two flash banks, we need to call this function twice with each bank start
* address.
*
* \param ul_address Flash bank start address.
*
* \return 0 if successful; otherwise returns an error code.
*/
uint32_t flash_erase_all(uint32_t ul_address)
{
Efc *p_efc;
translate_address(&p_efc, ul_address, NULL, NULL);
if (EFC_RC_OK != efc_perform_command(p_efc, EFC_FCMD_EA, 0)) {
return FLASH_RC_ERROR;
}
return FLASH_RC_OK;
}
#if SAM3SD8
/**
* \brief Erase the flash by plane.
*
* \param ul_address Flash plane start address.
*
* \note Erase plane command needs a page number parameter which belongs to
* the plane to be erased.
*
* \return 0 if successful; otherwise returns an error code.
*/
uint32_t flash_erase_plane(uint32_t ul_address)
{
Efc *p_efc;
uint16_t us_page;
translate_address(&p_efc, ul_address, &us_page, NULL);
if (EFC_RC_OK != efc_perform_command(p_efc, EFC_FCMD_EPL, us_page)) {
return FLASH_RC_ERROR;
}
return FLASH_RC_OK;
}
#endif
#if (SAM4S || SAM4E)
/**
* \brief Erase the specified pages of flash.
*
* \param ul_address Flash bank start address.
*
* \return 0 if successful; otherwise returns an error code.
*/
uint32_t flash_erase_page(uint32_t ul_address, uint8_t uc_page_num)
{
Efc *p_efc;
uint16_t us_page;
if (uc_page_num >= IFLASH_ERASE_PAGES_INVALID) {
return FLASH_RC_INVALID;
}
if (ul_address & (IFLASH_PAGE_SIZE - 1)) {
return FLASH_RC_INVALID;
}
translate_address(&p_efc, ul_address, &us_page, NULL);
if (EFC_RC_OK != efc_perform_command(p_efc, EFC_FCMD_EPA,
(us_page | uc_page_num))) {
return FLASH_RC_ERROR;
}
return FLASH_RC_OK;
}
/**
* \brief Erase the flash sector.
*
* \note Erase sector command needs a page number parameter which belongs to
* the sector to be erased.
*
* \param ul_address Flash sector start address.
*
* \return 0 if successful; otherwise returns an error code.
*/
uint32_t flash_erase_sector(uint32_t ul_address)
{
Efc *p_efc;
uint16_t us_page;
translate_address(&p_efc, ul_address, &us_page, NULL);
if (EFC_RC_OK != efc_perform_command(p_efc, EFC_FCMD_ES, us_page)) {
return FLASH_RC_ERROR;
}
return FLASH_RC_OK;
}
#endif
/**
* \brief Write a data buffer on flash.
*
* \note This function works in polling mode, and thus only returns when the
* data has been effectively written.
* \note For dual bank flash, this function doesn't support cross write from
* bank 0 to bank 1. In this case, flash_write must be called twice (ie for
* each bank).
*
* \param ul_address Write address.
* \param p_buffer Data buffer.
* \param ul_size Size of data buffer in bytes.
* \param ul_erase_flag Flag to set if erase first.
*
* \return 0 if successful, otherwise returns an error code.
*/
uint32_t flash_write(uint32_t ul_address, const void *p_buffer,
uint32_t ul_size, uint32_t ul_erase_flag)
{
Efc *p_efc;
uint32_t ul_fws_temp;
uint16_t us_page;
uint16_t us_offset;
uint32_t writeSize;
uint32_t ul_page_addr;
uint16_t us_padding;
uint32_t ul_error;
uint32_t ul_idx;
uint32_t *p_aligned_dest;
uint8_t *puc_page_buffer = (uint8_t *) gs_ul_page_buffer;
translate_address(&p_efc, ul_address, &us_page, &us_offset);
/* According to the errata, set the wait state value to 6. */
ul_fws_temp = efc_get_wait_state(p_efc);
efc_set_wait_state(p_efc, 6);
/* Write all pages */
while (ul_size > 0) {
/* Copy data in temporary buffer to avoid alignment problems. */
writeSize = Min((uint32_t) IFLASH_PAGE_SIZE - us_offset,
ul_size);
compute_address(p_efc, us_page, 0, &ul_page_addr);
us_padding = IFLASH_PAGE_SIZE - us_offset - writeSize;
/* Pre-buffer data */
memcpy(puc_page_buffer, (void *)ul_page_addr, us_offset);
/* Buffer data */
memcpy(puc_page_buffer + us_offset, p_buffer, writeSize);
/* Post-buffer data */
memcpy(puc_page_buffer + us_offset + writeSize,
(void *)(ul_page_addr + us_offset + writeSize),
us_padding);
/* Write page.
* Writing 8-bit and 16-bit data is not allowed and may lead to
* unpredictable data corruption.
*/
p_aligned_dest = (uint32_t *) ul_page_addr;
for (ul_idx = 0; ul_idx < (IFLASH_PAGE_SIZE / sizeof(uint32_t));
++ul_idx) {
*p_aligned_dest++ = gs_ul_page_buffer[ul_idx];
}
if (ul_erase_flag) {
ul_error = efc_perform_command(p_efc, EFC_FCMD_EWP,
us_page);
} else {
ul_error = efc_perform_command(p_efc, EFC_FCMD_WP,
us_page);
}
if (ul_error) {
return ul_error;
}
/* Progression */
p_buffer = (void *)((uint32_t) p_buffer + writeSize);
ul_size -= writeSize;
us_page++;
us_offset = 0;
}
/* According to the errata, restore the wait state value. */
efc_set_wait_state(p_efc, ul_fws_temp);
return FLASH_RC_OK;
}
/**
* \brief Lock all the regions in the given address range. The actual lock
* range is reported through two output parameters.
*
* \param ul_start Start address of lock range.
* \param ul_end End address of lock range.
* \param pul_actual_start Start address of the actual lock range (optional).
* \param pul_actual_end End address of the actual lock range (optional).
*
* \return 0 if successful, otherwise returns an error code.
*/
uint32_t flash_lock(uint32_t ul_start, uint32_t ul_end,
uint32_t *pul_actual_start, uint32_t *pul_actual_end)
{
Efc *p_efc;
uint32_t ul_actual_start, ul_actual_end;
uint16_t us_start_page, us_end_page;
uint32_t ul_error;
uint16_t us_num_pages_in_region =
IFLASH_LOCK_REGION_SIZE / IFLASH_PAGE_SIZE;
/* Compute actual lock range and store it */
compute_lock_range(ul_start, ul_end, &ul_actual_start, &ul_actual_end);
if (pul_actual_start != NULL) {
*pul_actual_start = ul_actual_start;
}
if (pul_actual_end != NULL) {
*pul_actual_end = ul_actual_end;
}
/* Compute page numbers */
translate_address(&p_efc, ul_actual_start, &us_start_page, 0);
translate_address(0, ul_actual_end, &us_end_page, 0);
/* Lock all pages */
while (us_start_page < us_end_page) {
ul_error = efc_perform_command(p_efc, EFC_FCMD_SLB, us_start_page);
if (ul_error) {
return ul_error;
}
us_start_page += us_num_pages_in_region;
}
return FLASH_RC_OK;
}
/**
* \brief Unlock all the regions in the given address range. The actual unlock
* range is reported through two output parameters.
*
* \param ul_start Start address of unlock range.
* \param ul_end End address of unlock range.
* \param pul_actual_start Start address of the actual unlock range (optional).
* \param pul_actual_end End address of the actual unlock range (optional).
*
* \return 0 if successful, otherwise returns an error code.
*/
uint32_t flash_unlock(uint32_t ul_start, uint32_t ul_end,
uint32_t *pul_actual_start, uint32_t *pul_actual_end)
{
Efc *p_efc;
uint32_t ul_actual_start, ul_actual_end;
uint16_t us_start_page, us_end_page;
uint32_t ul_error;
uint16_t us_num_pages_in_region =
IFLASH_LOCK_REGION_SIZE / IFLASH_PAGE_SIZE;
/* Compute actual unlock range and store it */
compute_lock_range(ul_start, ul_end, &ul_actual_start, &ul_actual_end);
if (pul_actual_start != NULL) {
*pul_actual_start = ul_actual_start;
}
if (pul_actual_end != NULL) {
*pul_actual_end = ul_actual_end;
}
/* Compute page numbers */
translate_address(&p_efc, ul_actual_start, &us_start_page, 0);
translate_address(0, ul_actual_end, &us_end_page, 0);
/* Unlock all pages */
while (us_start_page < us_end_page) {
ul_error = efc_perform_command(p_efc, EFC_FCMD_CLB,
us_start_page);
if (ul_error) {
return ul_error;
}
us_start_page += us_num_pages_in_region;
}
return FLASH_RC_OK;
}
/**
* \brief Get the number of locked regions inside the given address range.
*
* \param ul_start Start address of range
* \param ul_end End address of range.
*
* \return The number of locked regions inside the given address range.
*/
uint32_t flash_is_locked(uint32_t ul_start, uint32_t ul_end)
{
Efc *p_efc;
uint16_t us_start_page, us_end_page;
uint8_t uc_start_region, uc_end_region;
uint16_t us_num_pages_in_region;
uint32_t ul_status;
uint32_t ul_error;
uint32_t ul_num_locked_regions = 0;
uint32_t ul_count = 0;
uint32_t ul_bit = 0;
/* Compute page numbers */
translate_address(&p_efc, ul_start, &us_start_page, 0);
translate_address(0, ul_end, &us_end_page, 0);
/* Compute region numbers */
us_num_pages_in_region = IFLASH_LOCK_REGION_SIZE / IFLASH_PAGE_SIZE;
uc_start_region = us_start_page / us_num_pages_in_region;
uc_end_region = us_end_page / us_num_pages_in_region;
/* Retrieve lock status */
ul_error = efc_perform_command(p_efc, EFC_FCMD_GLB, 0);
/* Skip unrequested regions (if necessary) */
ul_status = efc_get_result(p_efc);
while (!(ul_count <= uc_start_region &&
uc_start_region < (ul_count + 32))) {
ul_status = efc_get_result(p_efc);
ul_count += 32;
}
/* Check status of each involved region */
ul_bit = uc_start_region - ul_count;
/* Number of region to check (must be > 0) */
ul_count = uc_end_region - uc_start_region + 1;
while (ul_count > 0) {
if (ul_status & (1 << (ul_bit))) {
ul_num_locked_regions++;
}
ul_count -= 1;
ul_bit += 1;
if (ul_bit == 32) {
ul_status = efc_get_result(p_efc);
ul_bit = 0;
}
}
return ul_num_locked_regions;
}
/**
* \brief Set the given GPNVM bit.
*
* \param ul_gpnvm GPNVM bit index.
*
* \return 0 if successful; otherwise returns an error code.
*/
uint32_t flash_set_gpnvm(uint32_t ul_gpnvm)
{
if (ul_gpnvm >= GPNVM_NUM_MAX) {
return FLASH_RC_INVALID;
}
if (FLASH_RC_YES == flash_is_gpnvm_set(ul_gpnvm)) {
return FLASH_RC_OK;
}
if (EFC_RC_OK == efc_perform_command(EFC, EFC_FCMD_SGPB, ul_gpnvm)) {
return FLASH_RC_OK;
}
return FLASH_RC_ERROR;
}
/**
* \brief Clear the given GPNVM bit.
*
* \param ul_gpnvm GPNVM bit index.
*
* \return 0 if successful; otherwise returns an error code.
*/
uint32_t flash_clear_gpnvm(uint32_t ul_gpnvm)
{
if (ul_gpnvm >= GPNVM_NUM_MAX) {
return FLASH_RC_INVALID;
}
if (FLASH_RC_NO == flash_is_gpnvm_set(ul_gpnvm)) {
return FLASH_RC_OK;
}
if (EFC_RC_OK == efc_perform_command(EFC, EFC_FCMD_CGPB, ul_gpnvm)) {
return FLASH_RC_OK;
}
return FLASH_RC_ERROR;
}
/**
* \brief Check if the given GPNVM bit is set or not.
*
* \param ul_gpnvm GPNVM bit index.
*
* \retval 1 If the given GPNVM bit is currently set.
* \retval 0 If the given GPNVM bit is currently cleared.
*/
uint32_t flash_is_gpnvm_set(uint32_t ul_gpnvm)
{
uint32_t ul_gpnvm_bits;
if (ul_gpnvm >= GPNVM_NUM_MAX) {
return FLASH_RC_INVALID;
}
if (EFC_RC_OK != efc_perform_command(EFC, EFC_FCMD_GGPB, 0)) {
return FLASH_RC_ERROR;
}
ul_gpnvm_bits = efc_get_result(EFC);
if (ul_gpnvm_bits & (1 << ul_gpnvm)) {
return FLASH_RC_YES;
}
return FLASH_RC_NO;
}
/**
* \brief Set security bit.
*
* \return 0 if successful; otherwise returns an error code.
*/
uint32_t flash_enable_security_bit(void)
{
return flash_set_gpnvm(0);
}
/**
* \brief Check if the security bit is set or not.
*
* \retval 1 If the security bit is currently set.
* \retval 0 If the security bit is currently cleared.
*/
uint32_t flash_is_security_bit_enabled(void)
{
return flash_is_gpnvm_set(0);
}
/**
* \brief Read the flash unique ID.
*
* \param pul_data Pointer to a data buffer to store 128-bit unique ID.
* \param ul_size Data buffer size in DWORD.
*
* \return 0 if successful; otherwise returns an error code.
*/
uint32_t flash_read_unique_id(uint32_t *pul_data, uint32_t ul_size)
{
uint32_t uid_buf[4];
uint32_t ul_idx;
if (FLASH_RC_OK != efc_perform_read_sequence(EFC, EFC_FCMD_STUI,
EFC_FCMD_SPUI, uid_buf, 4)) {
return FLASH_RC_ERROR;
}
if (ul_size > 4) {
/* Only 4 dword to store unique ID */
ul_size = 4;
}
for (ul_idx = 0; ul_idx < ul_size; ul_idx++) {
pul_data[ul_idx] = uid_buf[ul_idx];
}
return FLASH_RC_OK;
}
#if (SAM4S || SAM4E)
/**
* \brief Read the flash user signature.
*
* \param p_data Pointer to a data buffer to store 512 bytes of user signature.
* \param ul_size Data buffer size.
*
* \return 0 if successful; otherwise returns an error code.
*/
uint32_t flash_read_user_signature(uint32_t *p_data, uint32_t ul_size)
{
if (ul_size > FLASH_USER_SIG_SIZE) {
/* Only 512 byte to store unique ID */
ul_size = FLASH_USER_SIG_SIZE;
}
/* Send the read user signature commands */
if (FLASH_RC_OK != efc_perform_read_sequence(EFC, EFC_FCMD_STUS,
EFC_FCMD_SPUS, p_data, ul_size)) {
return FLASH_RC_ERROR;
}
return FLASH_RC_OK;
}
/**
* \brief Write the flash user signature.
*
* \param ul_address Write address.
* \param p_data Pointer to a data buffer to store 512 bytes of user signature.
* \param ul_size Data buffer size.
*
* \return 0 if successful; otherwise returns an error code.
*/
uint32_t flash_write_user_signature(uint32_t ul_address, const void *p_buffer,
uint32_t ul_size)
{
/* The user signature should be no longer than 512 bytes */
if (ul_size > FLASH_USER_SIG_SIZE) {
return FLASH_RC_INVALID;
}
/* Write the full page */
flash_write(ul_address, p_buffer, ul_size, 0);
/* Send the write signature command */
if (FLASH_RC_OK != efc_perform_command(EFC, EFC_FCMD_WUS, 0)) {
return FLASH_RC_ERROR;
}
return FLASH_RC_OK;
}
/**
* \brief Erase the flash user signature.
*
* \return 0 if successful; otherwise returns an error code.
*/
uint32_t flash_erase_user_signature(void)
{
/* Perform the erase user signature command */
return efc_perform_command(EFC, EFC_FCMD_EUS, 0);
}
#endif
//@}
/// @cond 0
/**INDENT-OFF**/
#ifdef __cplusplus
}
#endif
/**INDENT-ON**/
/// @endcond