
Incorporated zpl's Network module updates and some of his Gcodes updated Merged RRP's 0.96 Move code into mine Added M105 S3, M20 S2 and M36 commands for supporting TFT control panel Added X parameter to M305 command to allow thermistor channels to be changed Removed space after "B:" in M105 response to avoid confusing Pronterface
2135 lines
53 KiB
C++
2135 lines
53 KiB
C++
/****************************************************************************************************
|
|
|
|
RepRapFirmware - Platform: RepRapPro Ormerod with Arduino Due controller
|
|
|
|
Platform contains all the code and definitions to deal with machine-dependent things such as control
|
|
pins, bed area, number of extruders, tolerable accelerations and speeds and so on.
|
|
|
|
-----------------------------------------------------------------------------------------------------
|
|
|
|
Version 0.1
|
|
|
|
18 November 2012
|
|
|
|
Adrian Bowyer
|
|
RepRap Professional Ltd
|
|
http://reprappro.com
|
|
|
|
Licence: GPL
|
|
|
|
****************************************************************************************************/
|
|
|
|
#include "RepRapFirmware.h"
|
|
#include "DueFlashStorage.h" // comment this out if you don't want to build with Flash support
|
|
#if LWIP_STATS
|
|
#include "lwip/src/include/lwip/stats.h"
|
|
#endif
|
|
|
|
extern char _end;
|
|
extern "C" char *sbrk(int i);
|
|
|
|
const uint8_t memPattern = 0xA5;
|
|
|
|
static uint32_t fanInterruptCount = 0; // accessed only in ISR, so no need to declare it volatile
|
|
const uint32_t fanMaxInterruptCount = 32; // number of fan interrupts that we average over
|
|
static volatile uint32_t fanLastResetTime = 0; // time (microseconds) at which we last reset the interrupt count, accessed inside and outside ISR
|
|
static volatile uint32_t fanInterval = 0; // written by ISR, read outside the ISR
|
|
|
|
// Arduino initialise and loop functions
|
|
// Put nothing in these other than calls to the RepRap equivalents
|
|
|
|
void setup()
|
|
{
|
|
// Fill the free memory with a pattern so that we can check for stack usage and memory corruption
|
|
char* heapend = sbrk(0);
|
|
register const char * stack_ptr asm ("sp");
|
|
while (heapend + 16 < stack_ptr)
|
|
{
|
|
*heapend++ = memPattern;
|
|
}
|
|
|
|
reprap.Init();
|
|
}
|
|
|
|
void loop()
|
|
{
|
|
reprap.Spin();
|
|
}
|
|
|
|
extern "C"
|
|
{
|
|
// This intercepts the 1ms system tick. It must return 'false', otherwise the Arduino core tick handler will be bypassed.
|
|
int sysTickHook()
|
|
{
|
|
reprap.Tick();
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
//*************************************************************************************************
|
|
// PidParameters class
|
|
|
|
bool PidParameters::UsePID() const
|
|
{
|
|
return kP >= 0;
|
|
}
|
|
|
|
float PidParameters::GetThermistorR25() const
|
|
{
|
|
return thermistorInfR * exp(thermistorBeta / (25.0 - ABS_ZERO));
|
|
}
|
|
|
|
void PidParameters::SetThermistorR25AndBeta(float r25, float beta)
|
|
{
|
|
thermistorInfR = r25 * exp(-beta / (25.0 - ABS_ZERO));
|
|
thermistorBeta = beta;
|
|
}
|
|
|
|
bool PidParameters::operator==(const PidParameters& other) const
|
|
{
|
|
return kI == other.kI && kD == other.kD && kP == other.kP && kT == other.kT && kS == other.kS
|
|
&& fullBand == other.fullBand && pidMin == other.pidMin
|
|
&& pidMax == other.pidMax && thermistorBeta == other.thermistorBeta && thermistorInfR == other.thermistorInfR
|
|
&& thermistorSeriesR == other.thermistorSeriesR && adcLowOffset == other.adcLowOffset
|
|
&& adcHighOffset == other.adcHighOffset;
|
|
}
|
|
|
|
//*************************************************************************************************
|
|
// Platform class
|
|
|
|
Platform::Platform() :
|
|
tickState(0), fileStructureInitialised(false), active(false), errorCodeBits(0), debugCode(0),
|
|
messageString(messageStringBuffer, ARRAY_SIZE(messageStringBuffer)), autoSaveEnabled(false)
|
|
{
|
|
line = new Line(SerialUSB);
|
|
aux = new Line(Serial);
|
|
|
|
// Files
|
|
|
|
massStorage = new MassStorage(this);
|
|
|
|
for (int8_t i = 0; i < MAX_FILES; i++)
|
|
{
|
|
files[i] = new FileStore(this);
|
|
}
|
|
}
|
|
|
|
//*******************************************************************************************************************
|
|
|
|
void Platform::Init()
|
|
{
|
|
digitalWriteNonDue(atxPowerPin, LOW); // ensure ATX power is off by default
|
|
pinModeNonDue(atxPowerPin, OUTPUT);
|
|
|
|
SerialUSB.begin(BAUD_RATE);
|
|
Serial.begin(BAUD_RATE); // this can't be done in the constructor because the Arduino port initialisation isn't complete at that point
|
|
|
|
#ifdef DUEFLASHSTORAGE_H
|
|
DueFlashStorage::init();
|
|
|
|
# if __cplusplus >= 201103L
|
|
static_assert(sizeof(nvData) <= 1024, "NVData too large");
|
|
# else
|
|
// We are relying on the compiler optimizing this out if the condition is false
|
|
// Watch out for the build warning "undefined reference to 'BadStaticAssert()' if this fails.
|
|
if (!(sizeof(nvData) <= 1024))
|
|
{
|
|
extern void BadStaticAssert();
|
|
BadStaticAssert();
|
|
}
|
|
# endif
|
|
#endif
|
|
|
|
ResetNvData();
|
|
|
|
line->Init();
|
|
aux->Init();
|
|
messageIndent = 0;
|
|
|
|
massStorage->Init();
|
|
|
|
for (size_t file = 0; file < MAX_FILES; file++)
|
|
{
|
|
files[file]->Init();
|
|
}
|
|
|
|
fileStructureInitialised = true;
|
|
|
|
mcpDuet.begin(); //only call begin once in the entire execution, this begins the I2C comms on that channel for all objects
|
|
mcpExpansion.setMCP4461Address(0x2E); //not required for mcpDuet, as this uses the default address
|
|
sysDir = SYS_DIR;
|
|
configFile = CONFIG_FILE;
|
|
defaultFile = DEFAULT_FILE;
|
|
|
|
// DRIVES
|
|
|
|
ARRAY_INIT(stepPins, STEP_PINS);
|
|
ARRAY_INIT(directionPins, DIRECTION_PINS);
|
|
ARRAY_INIT(directions, DIRECTIONS);
|
|
ARRAY_INIT(enablePins, ENABLE_PINS);
|
|
ARRAY_INIT(disableDrives, DISABLE_DRIVES);
|
|
ARRAY_INIT(lowStopPins, LOW_STOP_PINS);
|
|
ARRAY_INIT(highStopPins, HIGH_STOP_PINS);
|
|
ARRAY_INIT(maxFeedrates, MAX_FEEDRATES);
|
|
ARRAY_INIT(accelerations, ACCELERATIONS);
|
|
ARRAY_INIT(driveStepsPerUnit, DRIVE_STEPS_PER_UNIT);
|
|
ARRAY_INIT(instantDvs, INSTANT_DVS);
|
|
ARRAY_INIT(potWipes, POT_WIPES);
|
|
senseResistor = SENSE_RESISTOR;
|
|
maxStepperDigipotVoltage = MAX_STEPPER_DIGIPOT_VOLTAGE;
|
|
//numMixingDrives = NUM_MIXING_DRIVES;
|
|
|
|
// Z PROBE
|
|
|
|
zProbePin = Z_PROBE_PIN;
|
|
zProbeModulationPin = Z_PROBE_MOD_PIN;
|
|
zProbeAdcChannel = PinToAdcChannel(zProbePin);
|
|
InitZProbe();
|
|
|
|
// AXES
|
|
|
|
ARRAY_INIT(axisMaxima, AXIS_MAXIMA);
|
|
ARRAY_INIT(axisMinima, AXIS_MINIMA);
|
|
ARRAY_INIT(homeFeedrates, HOME_FEEDRATES);
|
|
|
|
SetSlowestDrive();
|
|
|
|
// HEATERS - Bed is assumed to be the first
|
|
|
|
ARRAY_INIT(tempSensePins, TEMP_SENSE_PINS);
|
|
ARRAY_INIT(heatOnPins, HEAT_ON_PINS);
|
|
ARRAY_INIT(standbyTemperatures, STANDBY_TEMPERATURES);
|
|
ARRAY_INIT(activeTemperatures, ACTIVE_TEMPERATURES);
|
|
|
|
heatSampleTime = HEAT_SAMPLE_TIME;
|
|
coolingFanValue = 0.0;
|
|
coolingFanPin = COOLING_FAN_PIN;
|
|
coolingFanRpmPin = COOLING_FAN_RPM_PIN;
|
|
timeToHot = TIME_TO_HOT;
|
|
lastRpmResetTime = 0.0;
|
|
|
|
webDir = WEB_DIR;
|
|
gcodeDir = GCODE_DIR;
|
|
tempDir = TEMP_DIR;
|
|
|
|
for (size_t drive = 0; drive < DRIVES; drive++)
|
|
{
|
|
if (stepPins[drive] >= 0)
|
|
{
|
|
pinModeNonDue(stepPins[drive], OUTPUT);
|
|
}
|
|
if (directionPins[drive] >= 0)
|
|
{
|
|
pinModeNonDue(directionPins[drive], OUTPUT);
|
|
}
|
|
if (enablePins[drive] >= 0)
|
|
{
|
|
pinModeNonDue(enablePins[drive], OUTPUT);
|
|
}
|
|
if (lowStopPins[drive] >= 0)
|
|
{
|
|
pinModeNonDue(lowStopPins[drive], INPUT_PULLUP);
|
|
}
|
|
if (highStopPins[drive] >= 0)
|
|
{
|
|
pinModeNonDue(highStopPins[drive], INPUT_PULLUP);
|
|
}
|
|
Disable(drive);
|
|
driveEnabled[drive] = false;
|
|
}
|
|
|
|
for (size_t heater = 0; heater < HEATERS; heater++)
|
|
{
|
|
if (heatOnPins[heater] >= 0)
|
|
{
|
|
digitalWriteNonDue(heatOnPins[heater], HIGH); // turn the heater off
|
|
pinModeNonDue(heatOnPins[heater], OUTPUT);
|
|
}
|
|
analogReadResolution(12);
|
|
SetThermistorNumber(heater, heater); // map the thermistor straight through
|
|
thermistorFilters[heater].Init(analogRead(tempSensePins[heater]));
|
|
|
|
// Calculate and store the ADC average sum that corresponds to an overheat condition, so that we can check is quickly in the tick ISR
|
|
float thermistorOverheatResistance = nvData.pidParams[heater].GetRInf()
|
|
* exp(-nvData.pidParams[heater].GetBeta() / (BAD_HIGH_TEMPERATURE - ABS_ZERO));
|
|
float thermistorOverheatAdcValue = (adRangeReal + 1) * thermistorOverheatResistance
|
|
/ (thermistorOverheatResistance + nvData.pidParams[heater].thermistorSeriesR);
|
|
thermistorOverheatSums[heater] = (uint32_t) (thermistorOverheatAdcValue + 0.9) * numThermistorReadingsAveraged;
|
|
}
|
|
|
|
if (coolingFanPin >= 0)
|
|
{
|
|
// Inverse logic for Duet v0.6 and later; this turns it off
|
|
analogWriteNonDue(coolingFanPin, (HEAT_ON == 0) ? 255 : 0, true);
|
|
}
|
|
|
|
if (coolingFanRpmPin >= 0)
|
|
{
|
|
pinModeNonDue(coolingFanRpmPin, INPUT_PULLUP, 1500); // enable pullup and 1500Hz debounce filter (500Hz only worked up to 7000RPM)
|
|
}
|
|
|
|
InitialiseInterrupts();
|
|
|
|
addToTime = 0.0;
|
|
lastTimeCall = 0;
|
|
lastTime = Time();
|
|
longWait = lastTime;
|
|
}
|
|
|
|
// Specify which thermistor channel a particular heater uses
|
|
void Platform::SetThermistorNumber(size_t heater, size_t thermistor)
|
|
//pre(heater < HEATERS && thermistor < HEATERS)
|
|
{
|
|
heaterAdcChannels[heater] = PinToAdcChannel(tempSensePins[thermistor]);
|
|
}
|
|
|
|
int Platform::GetThermistorNumber(size_t heater) const
|
|
{
|
|
for (size_t thermistor = 0; thermistor < HEATERS; ++thermistor)
|
|
{
|
|
if (heaterAdcChannels[heater] == PinToAdcChannel(tempSensePins[thermistor]))
|
|
{
|
|
return thermistor;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
void Platform::SetSlowestDrive()
|
|
{
|
|
slowestDrive = 0;
|
|
for(int8_t drive = 1; drive < DRIVES; drive++)
|
|
{
|
|
if(InstantDv(drive) < InstantDv(slowestDrive))
|
|
slowestDrive = drive;
|
|
}
|
|
}
|
|
|
|
void Platform::InitZProbe()
|
|
{
|
|
zProbeOnFilter.Init(0);
|
|
zProbeOffFilter.Init(0);
|
|
|
|
// zpl-2014-10-12: The Z-probe index of dc42's alternate sensor has moved from 3 to 4/5 to stay compatible with RRP's FW
|
|
if (nvData.zProbeType >= 1)
|
|
{
|
|
zProbeModulationPin = (nvData.zProbeType == 3 || nvData.zProbeType == 5) ? Z_PROBE_MOD_PIN07 : Z_PROBE_MOD_PIN;
|
|
pinModeNonDue(zProbeModulationPin, OUTPUT);
|
|
digitalWriteNonDue(zProbeModulationPin, (nvData.zProbeType <= 3) ? HIGH : LOW); // enable the IR LED or alternate sensor
|
|
}
|
|
}
|
|
|
|
int Platform::GetRawZHeight() const
|
|
{
|
|
return (nvData.zProbeType != 0) ? analogRead(zProbePin) : 0;
|
|
}
|
|
|
|
// Return the Z probe data.
|
|
// The ADC readings are 12 bits, so we convert them to 10-bit readings for compatibility with the old firmware.
|
|
int Platform::ZProbe() const
|
|
{
|
|
if (zProbeOnFilter.IsValid() && zProbeOffFilter.IsValid())
|
|
{
|
|
switch (nvData.zProbeType)
|
|
{
|
|
case 1:
|
|
case 4:
|
|
case 5:
|
|
// Simple IR sensor, or direct-mode ultrasonic sensor
|
|
return (int) ((zProbeOnFilter.GetSum() + zProbeOffFilter.GetSum()) / (8 * numZProbeReadingsAveraged));
|
|
|
|
case 2:
|
|
case 3:
|
|
// Modulated IR sensor. We assume that zProbeOnFilter and zprobeOffFilter average the same number of readings.
|
|
// Because of noise, it is possible to get a negative reading, so allow for this.
|
|
return (int) (((int32_t) zProbeOnFilter.GetSum() - (int32_t) zProbeOffFilter.GetSum())
|
|
/ (4 * numZProbeReadingsAveraged));
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return 0; // Z probe not turned on or not initialised yet
|
|
}
|
|
|
|
// Return the Z probe secondary values.
|
|
int Platform::GetZProbeSecondaryValues(int& v1, int& v2)
|
|
{
|
|
if (zProbeOnFilter.IsValid() && zProbeOffFilter.IsValid())
|
|
{
|
|
switch (nvData.zProbeType)
|
|
{
|
|
case 2: // modulated IR sensor
|
|
case 3: // modulated IR sensor (Duet 0.7)
|
|
v1 = (int) (zProbeOnFilter.GetSum() / (4 * numZProbeReadingsAveraged)); // pass back the reading with IR turned on
|
|
return 1;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int Platform::GetZProbeType() const
|
|
{
|
|
return nvData.zProbeType;
|
|
}
|
|
|
|
void Platform::SetZProbeAxes(const bool axes[AXES])
|
|
{
|
|
for(int axis=0; axis<AXES; axis++)
|
|
{
|
|
nvData.zProbeAxes[axis] = axes[axis];
|
|
}
|
|
if (autoSaveEnabled)
|
|
{
|
|
WriteNvData();
|
|
}
|
|
}
|
|
|
|
void Platform::GetZProbeAxes(bool (&axes)[AXES])
|
|
{
|
|
for(int axis=0; axis<AXES; axis++)
|
|
{
|
|
axes[axis] = nvData.zProbeAxes[axis];
|
|
}
|
|
}
|
|
|
|
float Platform::ZProbeStopHeight() const
|
|
{
|
|
switch (nvData.zProbeType)
|
|
{
|
|
case 0:
|
|
return nvData.switchZProbeParameters.GetStopHeight(GetTemperature(0));
|
|
case 1:
|
|
case 2:
|
|
case 3:
|
|
return nvData.irZProbeParameters.GetStopHeight(GetTemperature(0));
|
|
case 4:
|
|
case 5:
|
|
return nvData.alternateZProbeParameters.GetStopHeight(GetTemperature(0));
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void Platform::SetZProbeType(int pt)
|
|
{
|
|
int newZProbeType = (pt >= 0 && pt <= 4) ? pt : 0;
|
|
if (newZProbeType != nvData.zProbeType)
|
|
{
|
|
nvData.zProbeType = newZProbeType;
|
|
if (autoSaveEnabled)
|
|
{
|
|
WriteNvData();
|
|
}
|
|
}
|
|
InitZProbe();
|
|
}
|
|
|
|
bool Platform::GetZProbeParameters(struct ZProbeParameters& params) const
|
|
{
|
|
switch (nvData.zProbeType)
|
|
{
|
|
case 0:
|
|
params = nvData.switchZProbeParameters;
|
|
return true;
|
|
case 1:
|
|
case 2:
|
|
case 3:
|
|
params = nvData.irZProbeParameters;
|
|
return true;
|
|
case 4:
|
|
case 5:
|
|
params = nvData.alternateZProbeParameters;
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool Platform::SetZProbeParameters(const struct ZProbeParameters& params)
|
|
{
|
|
switch (nvData.zProbeType)
|
|
{
|
|
case 0:
|
|
if (nvData.switchZProbeParameters != params)
|
|
{
|
|
nvData.switchZProbeParameters = params;
|
|
if (autoSaveEnabled)
|
|
{
|
|
WriteNvData();
|
|
}
|
|
}
|
|
return true;
|
|
case 1:
|
|
case 2:
|
|
case 3:
|
|
if (nvData.irZProbeParameters != params)
|
|
{
|
|
nvData.irZProbeParameters = params;
|
|
if (autoSaveEnabled)
|
|
{
|
|
WriteNvData();
|
|
}
|
|
}
|
|
return true;
|
|
case 4:
|
|
case 5:
|
|
if (nvData.alternateZProbeParameters != params)
|
|
{
|
|
nvData.alternateZProbeParameters = params;
|
|
if (autoSaveEnabled)
|
|
{
|
|
WriteNvData();
|
|
}
|
|
}
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Return true if we must home X and Y before we home Z (i.e. we are using a bed probe)
|
|
bool Platform::MustHomeXYBeforeZ() const
|
|
{
|
|
return nvData.zProbeType != 0;
|
|
}
|
|
|
|
void Platform::ResetNvData()
|
|
{
|
|
nvData.compatibility = me;
|
|
ARRAY_INIT(nvData.ipAddress, IP_ADDRESS);
|
|
ARRAY_INIT(nvData.netMask, NET_MASK);
|
|
ARRAY_INIT(nvData.gateWay, GATE_WAY);
|
|
ARRAY_INIT(nvData.macAddress, MAC_ADDRESS);
|
|
|
|
nvData.zProbeType = 0; // Default is to use the switch
|
|
ARRAY_INIT(nvData.zProbeAxes, Z_PROBE_AXES);
|
|
nvData.switchZProbeParameters.Init(0.0);
|
|
nvData.irZProbeParameters.Init(Z_PROBE_STOP_HEIGHT);
|
|
nvData.alternateZProbeParameters.Init(Z_PROBE_STOP_HEIGHT);
|
|
|
|
for (size_t i = 0; i < HEATERS; ++i)
|
|
{
|
|
PidParameters& pp = nvData.pidParams[i];
|
|
pp.thermistorSeriesR = defaultThermistorSeriesRs[i];
|
|
pp.SetThermistorR25AndBeta(defaultThermistor25RS[i], defaultThermistorBetas[i]);
|
|
pp.kI = defaultPidKis[i];
|
|
pp.kD = defaultPidKds[i];
|
|
pp.kP = defaultPidKps[i];
|
|
pp.kT = defaultPidKts[i];
|
|
pp.kS = defaultPidKss[i];
|
|
pp.fullBand = defaultFullBands[i];
|
|
pp.pidMin = defaultPidMins[i];
|
|
pp.pidMax = defaultPidMaxes[i];
|
|
pp.adcLowOffset = pp.adcHighOffset = 0.0;
|
|
}
|
|
|
|
nvData.resetReason = 0;
|
|
GetStackUsage(NULL, NULL, &nvData.neverUsedRam);
|
|
#ifdef DUEFLASHSTORAGE_H
|
|
nvData.magic = FlashData::magicValue;
|
|
#endif
|
|
}
|
|
|
|
void Platform::ReadNvData()
|
|
{
|
|
#ifdef DUEFLASHSTORAGE_H
|
|
DueFlashStorage::read(nvAddress, &nvData, sizeof(nvData));
|
|
if (nvData.magic != FlashData::magicValue)
|
|
{
|
|
// Nonvolatile data has not been initialized since the firmware was last written, so set up default values
|
|
ResetNvData();
|
|
WriteNvData();
|
|
}
|
|
#else
|
|
Message(BOTH_ERROR_MESSAGE, "Cannot load non-volatile data, because Flash support has been disabled!");
|
|
#endif
|
|
}
|
|
|
|
void Platform::WriteNvData()
|
|
{
|
|
#ifdef DUEFLASHSTORAGE_H
|
|
DueFlashStorage::write(nvAddress, &nvData, sizeof(nvData));
|
|
#else
|
|
Message(BOTH_ERROR_MESSAGE, "Cannot write non-volatile data, because Flash support has been disabled!");
|
|
#endif
|
|
}
|
|
|
|
void Platform::SetAutoSave(bool enabled)
|
|
{
|
|
#ifdef DUEFLASHSTORAGE_H
|
|
autoSaveEnabled = enabled;
|
|
#else
|
|
Message(BOTH_ERROR_MESSAGE, "Cannot enable auto-save, because Flash support has been disabled!");
|
|
#endif
|
|
}
|
|
|
|
|
|
// Note: the use of floating point time will cause the resolution to degrade over time.
|
|
// For example, 1ms time resolution will only be available for about half an hour from startup.
|
|
// Personally, I (dc42) would rather just maintain and provide the time in milliseconds in a uint32_t.
|
|
// This would wrap round after about 49 days, but that isn't difficult to handle.
|
|
float Platform::Time()
|
|
{
|
|
unsigned long now = micros();
|
|
if (now < lastTimeCall) // Has timer overflowed?
|
|
{
|
|
addToTime += ((float) ULONG_MAX) * TIME_FROM_REPRAP;
|
|
}
|
|
lastTimeCall = now;
|
|
return addToTime + TIME_FROM_REPRAP * (float) now;
|
|
}
|
|
|
|
void Platform::Exit()
|
|
{
|
|
Message(BOTH_MESSAGE, "Platform class exited.\n");
|
|
active = false;
|
|
}
|
|
|
|
Compatibility Platform::Emulating() const
|
|
{
|
|
if (nvData.compatibility == reprapFirmware)
|
|
return me;
|
|
return nvData.compatibility;
|
|
}
|
|
|
|
void Platform::SetEmulating(Compatibility c)
|
|
{
|
|
if (c != me && c != reprapFirmware && c != marlin)
|
|
{
|
|
Message(BOTH_ERROR_MESSAGE, "Attempt to emulate unsupported firmware.\n");
|
|
return;
|
|
}
|
|
if (c == reprapFirmware)
|
|
{
|
|
c = me;
|
|
}
|
|
if (c != nvData.compatibility)
|
|
{
|
|
nvData.compatibility = c;
|
|
if (autoSaveEnabled)
|
|
{
|
|
WriteNvData();
|
|
}
|
|
}
|
|
}
|
|
|
|
void Platform::UpdateNetworkAddress(byte dst[4], const byte src[4])
|
|
{
|
|
bool changed = false;
|
|
for (uint8_t i = 0; i < 4; i++)
|
|
{
|
|
if (dst[i] != src[i])
|
|
{
|
|
dst[i] = src[i];
|
|
changed = true;
|
|
}
|
|
}
|
|
if (changed && autoSaveEnabled)
|
|
{
|
|
WriteNvData();
|
|
}
|
|
}
|
|
|
|
void Platform::SetIPAddress(byte ip[])
|
|
{
|
|
UpdateNetworkAddress(nvData.ipAddress, ip);
|
|
}
|
|
|
|
void Platform::SetGateWay(byte gw[])
|
|
{
|
|
UpdateNetworkAddress(nvData.gateWay, gw);
|
|
}
|
|
|
|
void Platform::SetNetMask(byte nm[])
|
|
{
|
|
UpdateNetworkAddress(nvData.netMask, nm);
|
|
}
|
|
|
|
void Platform::Spin()
|
|
{
|
|
if (!active)
|
|
return;
|
|
|
|
if (debugCode == DiagnosticTest::TestSpinLockup)
|
|
{
|
|
for (;;) {}
|
|
}
|
|
|
|
line->Spin();
|
|
aux->Spin();
|
|
|
|
ClassReport("Platform", longWait);
|
|
|
|
}
|
|
|
|
void Platform::SoftwareReset(uint16_t reason)
|
|
{
|
|
if (reason != 0)
|
|
{
|
|
if (line->inWrite)
|
|
{
|
|
reason |= SoftwareResetReason::inUsbOutput; // if we are resetting because we are stuck in a Spin function, record whether we are trying to send to USB
|
|
}
|
|
if (reprap.GetNetwork()->InLwip())
|
|
{
|
|
reason |= SoftwareResetReason::inLwipSpin;
|
|
}
|
|
if (aux->inWrite)
|
|
{
|
|
reason |= SoftwareResetReason::inAuxOutput; // if we are resetting because we are stuck in a Spin function, record whether we are trying to send to aux
|
|
}
|
|
}
|
|
|
|
if (reason != 0 || reason != nvData.resetReason)
|
|
{
|
|
// zpl-2014-11-03: Here we must ensure that no changed values are saved, so load last-known values first
|
|
ReadNvData();
|
|
nvData.resetReason = reason;
|
|
GetStackUsage(NULL, NULL, &nvData.neverUsedRam);
|
|
WriteNvData();
|
|
}
|
|
|
|
rstc_start_software_reset(RSTC);
|
|
for(;;) {}
|
|
}
|
|
|
|
//*****************************************************************************************************************
|
|
|
|
// Interrupts
|
|
|
|
void TC3_Handler()
|
|
{
|
|
TC_GetStatus(TC1, 0);
|
|
reprap.Interrupt();
|
|
}
|
|
|
|
void TC4_Handler()
|
|
{
|
|
TC_GetStatus(TC1, 1);
|
|
reprap.GetNetwork()->Interrupt();
|
|
}
|
|
|
|
void FanInterrupt()
|
|
{
|
|
++fanInterruptCount;
|
|
if (fanInterruptCount == fanMaxInterruptCount)
|
|
{
|
|
uint32_t now = micros();
|
|
fanInterval = now - fanLastResetTime;
|
|
fanLastResetTime = now;
|
|
fanInterruptCount = 0;
|
|
}
|
|
}
|
|
|
|
void Platform::InitialiseInterrupts()
|
|
{
|
|
// Timer interrupt for stepper motors
|
|
pmc_set_writeprotect(false);
|
|
pmc_enable_periph_clk((uint32_t) TC3_IRQn);
|
|
TC_Configure(TC1, 0, TC_CMR_WAVE | TC_CMR_WAVSEL_UP_RC | TC_CMR_TCCLKS_TIMER_CLOCK4);
|
|
TC1 ->TC_CHANNEL[0].TC_IER = TC_IER_CPCS;
|
|
TC1 ->TC_CHANNEL[0].TC_IDR = ~TC_IER_CPCS;
|
|
SetInterrupt(STANDBY_INTERRUPT_RATE);
|
|
|
|
// Timer interrupt to keep the networking timers running (called at 8Hz)
|
|
pmc_enable_periph_clk((uint32_t) TC4_IRQn);
|
|
TC_Configure(TC1, 1, TC_CMR_WAVE | TC_CMR_WAVSEL_UP_RC | TC_CMR_TCCLKS_TIMER_CLOCK2);
|
|
uint32_t rc = VARIANT_MCK/8/16; // 8 because we selected TIMER_CLOCK2 above
|
|
TC_SetRA(TC1, 1, rc/2); // 50% high, 50% low
|
|
TC_SetRC(TC1, 1, rc);
|
|
TC_Start(TC1, 1);
|
|
TC1 ->TC_CHANNEL[1].TC_IER = TC_IER_CPCS;
|
|
TC1 ->TC_CHANNEL[1].TC_IDR = ~TC_IER_CPCS;
|
|
NVIC_EnableIRQ(TC4_IRQn);
|
|
|
|
// Interrupt for 4-pin PWM fan sense line
|
|
attachInterrupt(coolingFanRpmPin, FanInterrupt, FALLING);
|
|
|
|
// Tick interrupt for ADC conversions
|
|
tickState = 0;
|
|
currentHeater = 0;
|
|
|
|
active = true; // this enables the tick interrupt, which keeps the watchdog happy
|
|
}
|
|
|
|
//void Platform::DisableInterrupts()
|
|
//{
|
|
// NVIC_DisableIRQ(TC3_IRQn);
|
|
// NVIC_DisableIRQ(TC4_IRQn);
|
|
//}
|
|
|
|
// Process a 1ms tick interrupt
|
|
// This function must be kept fast so as not to disturb the stepper timing, so don't do any floating point maths in here.
|
|
// This is what we need to do:
|
|
// 0. Kick the watchdog.
|
|
// 1. Kick off a new ADC conversion.
|
|
// 2. Fetch and process the result of the last ADC conversion.
|
|
// 3a. If the last ADC conversion was for the Z probe, toggle the modulation output if using a modulated IR sensor.
|
|
// 3b. If the last ADC reading was a thermistor reading, check for an over-temperature situation and turn off the heater if necessary.
|
|
// We do this here because the usual polling loop sometimes gets stuck trying to send data to the USB port.
|
|
|
|
//#define TIME_TICK_ISR 1 // define this to store the tick ISR time in errorCodeBits
|
|
|
|
void Platform::Tick()
|
|
{
|
|
#ifdef TIME_TICK_ISR
|
|
uint32_t now = micros();
|
|
#endif
|
|
switch (tickState)
|
|
{
|
|
case 1: // last conversion started was a thermistor
|
|
case 3:
|
|
{
|
|
ThermistorAveragingFilter& currentFilter = const_cast<ThermistorAveragingFilter&>(thermistorFilters[currentHeater]);
|
|
currentFilter.ProcessReading(GetAdcReading(heaterAdcChannels[currentHeater]));
|
|
StartAdcConversion(zProbeAdcChannel);
|
|
if (currentFilter.IsValid())
|
|
{
|
|
uint32_t sum = currentFilter.GetSum();
|
|
if (sum < thermistorOverheatSums[currentHeater] || sum >= adDisconnectedReal * numThermistorReadingsAveraged)
|
|
{
|
|
// We have an over-temperature or bad reading from this thermistor, so turn off the heater
|
|
// NB - the SetHeater function we call does floating point maths, but this is an exceptional situation so we allow it
|
|
SetHeater(currentHeater, 0.0);
|
|
errorCodeBits |= ErrorBadTemp;
|
|
}
|
|
}
|
|
++currentHeater;
|
|
if (currentHeater == HEATERS)
|
|
{
|
|
currentHeater = 0;
|
|
}
|
|
}
|
|
++tickState;
|
|
break;
|
|
|
|
case 2: // last conversion started was the Z probe, with IR LED on
|
|
const_cast<ZProbeAveragingFilter&>(zProbeOnFilter).ProcessReading(GetAdcReading(zProbeAdcChannel));
|
|
StartAdcConversion(heaterAdcChannels[currentHeater]); // read a thermistor
|
|
if (nvData.zProbeType == 2 || nvData.zProbeType == 3) // if using a modulated IR sensor
|
|
{
|
|
digitalWriteNonDue(zProbeModulationPin, LOW); // turn off the IR emitter
|
|
}
|
|
++tickState;
|
|
break;
|
|
|
|
case 4: // last conversion started was the Z probe, with IR LED off if modulation is enabled
|
|
const_cast<ZProbeAveragingFilter&>(zProbeOffFilter).ProcessReading(GetAdcReading(zProbeAdcChannel));
|
|
// no break
|
|
case 0: // this is the state after initialisation, no conversion has been started
|
|
default:
|
|
StartAdcConversion(heaterAdcChannels[currentHeater]); // read a thermistor
|
|
if (nvData.zProbeType == 2 || nvData.zProbeType == 3) // if using a modulated IR sensor
|
|
{
|
|
digitalWriteNonDue(zProbeModulationPin, HIGH); // turn on the IR emitter
|
|
}
|
|
tickState = 1;
|
|
break;
|
|
}
|
|
#ifdef TIME_TICK_ISR
|
|
uint32_t now2 = micros();
|
|
if (now2 - now > errorCodeBits)
|
|
{
|
|
errorCodeBits = now2 - now;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*static*/uint16_t Platform::GetAdcReading(adc_channel_num_t chan)
|
|
{
|
|
uint16_t rslt = (uint16_t) adc_get_channel_value(ADC, chan);
|
|
adc_disable_channel(ADC, chan);
|
|
return rslt;
|
|
}
|
|
|
|
/*static*/void Platform::StartAdcConversion(adc_channel_num_t chan)
|
|
{
|
|
adc_enable_channel(ADC, chan);
|
|
adc_start(ADC );
|
|
}
|
|
|
|
// Convert an Arduino Due pin number to the corresponding ADC channel number
|
|
/*static*/adc_channel_num_t Platform::PinToAdcChannel(int pin)
|
|
{
|
|
if (pin < A0)
|
|
{
|
|
pin += A0;
|
|
}
|
|
return (adc_channel_num_t) (int) g_APinDescription[pin].ulADCChannelNumber;
|
|
}
|
|
|
|
//*************************************************************************************************
|
|
|
|
// This diagnostics function is the first to be called, so it calls Message to start with.
|
|
// All other messages generated by this and other diagnostics functions must call AppendMessage.
|
|
void Platform::Diagnostics()
|
|
{
|
|
Message(BOTH_MESSAGE, "Platform Diagnostics:\n");
|
|
|
|
// Print memory stats and error codes to USB and copy them to the current webserver reply
|
|
const char *ramstart = (char *) 0x20070000;
|
|
const struct mallinfo mi = mallinfo();
|
|
AppendMessage(BOTH_MESSAGE, "Memory usage:\n");
|
|
AppendMessage(BOTH_MESSAGE, "Program static ram used: %d\n", &_end - ramstart);
|
|
AppendMessage(BOTH_MESSAGE, "Dynamic ram used: %d\n", mi.uordblks);
|
|
AppendMessage(BOTH_MESSAGE, "Recycled dynamic ram: %d\n", mi.fordblks);
|
|
size_t currentStack, maxStack, neverUsed;
|
|
GetStackUsage(¤tStack, &maxStack, &neverUsed);
|
|
AppendMessage(BOTH_MESSAGE, "Current stack ram used: %d\n", currentStack);
|
|
AppendMessage(BOTH_MESSAGE, "Maximum stack ram used: %d\n", maxStack);
|
|
AppendMessage(BOTH_MESSAGE, "Never used ram: %d\n", neverUsed);
|
|
|
|
// Show the up time and reason for the last reset
|
|
const uint32_t now = (uint32_t)Time(); // get up time in seconds
|
|
const char* resetReasons[8] = { "power up", "backup", "watchdog", "software", "external", "?", "?", "?" };
|
|
AppendMessage(BOTH_MESSAGE, "Last reset %02d:%02d:%02d ago, cause: %s\n",
|
|
(unsigned int)(now/3600), (unsigned int)((now % 3600)/60), (unsigned int)(now % 60),
|
|
resetReasons[(REG_RSTC_SR & RSTC_SR_RSTTYP_Msk) >> RSTC_SR_RSTTYP_Pos]);
|
|
|
|
// Show the error code stored at the last software reset
|
|
AppendMessage(BOTH_MESSAGE, "Last software reset code & available RAM: 0x%04x, %u\n", nvData.resetReason, nvData.neverUsedRam);
|
|
|
|
// Show the current error codes
|
|
AppendMessage(BOTH_MESSAGE, "Error status: %u\n", errorCodeBits);
|
|
|
|
// Show the current probe position heights
|
|
AppendMessage(BOTH_MESSAGE, "Bed probe heights:");
|
|
for (size_t i = 0; i < NUMBER_OF_PROBE_POINTS; ++i)
|
|
{
|
|
AppendMessage(BOTH_MESSAGE, " %.3f", reprap.GetMove()->ZBedProbePoint(i));
|
|
}
|
|
AppendMessage(BOTH_MESSAGE, "\n");
|
|
|
|
// Show the number of free entries in the file table
|
|
unsigned int numFreeFiles = 0;
|
|
for (int8_t i = 0; i < MAX_FILES; i++)
|
|
{
|
|
if (!files[i]->inUse)
|
|
{
|
|
++numFreeFiles;
|
|
}
|
|
}
|
|
AppendMessage(BOTH_MESSAGE, "Free file entries: %u\n", numFreeFiles);
|
|
|
|
// Show the longest write time
|
|
AppendMessage(BOTH_MESSAGE, "Longest block write time: %.1fms\n", FileStore::GetAndClearLongestWriteTime());
|
|
|
|
reprap.Timing();
|
|
|
|
#if LWIP_STATS
|
|
// Normally we should NOT try to display LWIP stats here, because it uses debugPrintf(), which will hang the system is no USB cable is connected.
|
|
if (reprap.Debug())
|
|
{
|
|
stats_display();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void Platform::DiagnosticTest(int d)
|
|
{
|
|
switch (d)
|
|
{
|
|
case DiagnosticTest::TestWatchdog:
|
|
SysTick ->CTRL &= ~(SysTick_CTRL_TICKINT_Msk); // disable the system tick interrupt so that we get a watchdog timeout reset
|
|
break;
|
|
|
|
case DiagnosticTest::TestSpinLockup:
|
|
debugCode = d; // tell the Spin function to loop
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Return the stack usage and amount of memory that has never been used, in bytes
|
|
void Platform::GetStackUsage(size_t* currentStack, size_t* maxStack, size_t* neverUsed) const
|
|
{
|
|
const char *ramend = (const char *) 0x20088000;
|
|
register const char * stack_ptr asm ("sp");
|
|
const char *heapend = sbrk(0);
|
|
const char* stack_lwm = heapend;
|
|
while (stack_lwm < stack_ptr && *stack_lwm == memPattern)
|
|
{
|
|
++stack_lwm;
|
|
}
|
|
if (currentStack) { *currentStack = ramend - stack_ptr; }
|
|
if (maxStack) { *maxStack = ramend - stack_lwm; }
|
|
if (neverUsed) { *neverUsed = stack_lwm - heapend; }
|
|
}
|
|
|
|
void Platform::ClassReport(const char* className, float &lastTime)
|
|
{
|
|
if (!reprap.Debug())
|
|
return;
|
|
if (Time() - lastTime < LONG_TIME)
|
|
return;
|
|
lastTime = Time();
|
|
Message(HOST_MESSAGE, "Class %s spinning.\n", className);
|
|
}
|
|
|
|
//===========================================================================
|
|
//=============================Thermal Settings ============================
|
|
//===========================================================================
|
|
|
|
// See http://en.wikipedia.org/wiki/Thermistor#B_or_.CE.B2_parameter_equation
|
|
|
|
// BETA is the B value
|
|
// RS is the value of the series resistor in ohms
|
|
// R_INF is R0.exp(-BETA/T0), where R0 is the thermistor resistance at T0 (T0 is in kelvin)
|
|
// Normally T0 is 298.15K (25 C). If you write that expression in brackets in the #define the compiler
|
|
// should compute it for you (i.e. it won't need to be calculated at run time).
|
|
|
|
// If the A->D converter has a range of 0..1023 and the measured voltage is V (between 0 and 1023)
|
|
// then the thermistor resistance, R = V.RS/(1024 - V)
|
|
// and the temperature, T = BETA/ln(R/R_INF)
|
|
// To get degrees celsius (instead of kelvin) add -273.15 to T
|
|
|
|
// Result is in degrees celsius
|
|
|
|
float Platform::GetTemperature(size_t heater) const
|
|
{
|
|
int rawTemp = GetRawTemperature(heater);
|
|
|
|
// If the ADC reading is N then for an ideal ADC, the input voltage is at least N/(AD_RANGE + 1) and less than (N + 1)/(AD_RANGE + 1), times the analog reference.
|
|
// So we add 0.5 to to the reading to get a better estimate of the input.
|
|
|
|
float reading = (float) rawTemp + 0.5;
|
|
|
|
// Recognise the special case of thermistor disconnected.
|
|
// For some ADCs, the high-end offset is negative, meaning that the ADC never returns a high enough value. We need to allow for this here.
|
|
|
|
const PidParameters& p = nvData.pidParams[heater];
|
|
if (p.adcHighOffset < 0.0)
|
|
{
|
|
rawTemp -= (int) p.adcHighOffset;
|
|
}
|
|
if (rawTemp >= adDisconnectedVirtual)
|
|
{
|
|
return ABS_ZERO; // thermistor is disconnected
|
|
}
|
|
|
|
// Correct for the low and high ADC offsets
|
|
reading -= p.adcLowOffset;
|
|
reading *= (adRangeVirtual + 1) / (adRangeVirtual + 1 + p.adcHighOffset - p.adcLowOffset);
|
|
|
|
float resistance = reading * p.thermistorSeriesR / ((adRangeVirtual + 1) - reading);
|
|
return (resistance <= p.GetRInf()) ? 2000.0 // thermistor short circuit, return a high temperature
|
|
: ABS_ZERO + p.GetBeta() / log(resistance / p.GetRInf());
|
|
}
|
|
|
|
void Platform::SetPidParameters(size_t heater, const PidParameters& params)
|
|
{
|
|
if (heater < HEATERS && params != nvData.pidParams[heater])
|
|
{
|
|
nvData.pidParams[heater] = params;
|
|
if (autoSaveEnabled)
|
|
{
|
|
WriteNvData();
|
|
}
|
|
}
|
|
}
|
|
const PidParameters& Platform::GetPidParameters(size_t heater)
|
|
{
|
|
return nvData.pidParams[heater];
|
|
}
|
|
|
|
// power is a fraction in [0,1]
|
|
|
|
void Platform::SetHeater(size_t heater, float power)
|
|
{
|
|
if (heatOnPins[heater] < 0)
|
|
return;
|
|
|
|
byte p = (byte) (255.0 * min<float>(1.0, max<float>(0.0, power)));
|
|
analogWriteNonDue(heatOnPins[heater], (HEAT_ON == 0) ? 255 - p : p);
|
|
}
|
|
|
|
EndStopHit Platform::Stopped(int8_t drive)
|
|
{
|
|
if (nvData.zProbeType > 0 && drive < AXES && nvData.zProbeAxes[drive])
|
|
{
|
|
int zProbeVal = ZProbe();
|
|
int zProbeADValue =
|
|
(nvData.zProbeType == 3) ?
|
|
nvData.alternateZProbeParameters.adcValue : nvData.irZProbeParameters.adcValue;
|
|
if (zProbeVal >= zProbeADValue)
|
|
return lowHit;
|
|
else if (zProbeVal * 10 >= zProbeADValue * 9) // if we are at/above 90% of the target value
|
|
return lowNear;
|
|
else
|
|
return noStop;
|
|
}
|
|
|
|
if (lowStopPins[drive] >= 0)
|
|
{
|
|
if (digitalReadNonDue(lowStopPins[drive]) == ENDSTOP_HIT)
|
|
return lowHit;
|
|
}
|
|
if (highStopPins[drive] >= 0)
|
|
{
|
|
if (digitalReadNonDue(highStopPins[drive]) == ENDSTOP_HIT)
|
|
return highHit;
|
|
}
|
|
return noStop;
|
|
}
|
|
|
|
void Platform::SetDirection(byte drive, bool direction)
|
|
{
|
|
if(directionPins[drive] < 0)
|
|
return;
|
|
|
|
bool d = (direction == FORWARDS) ? directions[drive] : !directions[drive];
|
|
digitalWriteNonDue(directionPins[drive], d);
|
|
}
|
|
|
|
void Platform::Disable(byte drive)
|
|
{
|
|
if(enablePins[drive] < 0)
|
|
return;
|
|
digitalWriteNonDue(enablePins[drive], DISABLE);
|
|
driveEnabled[drive] = false;
|
|
}
|
|
|
|
void Platform::Step(byte drive)
|
|
{
|
|
if(stepPins[drive] < 0)
|
|
return;
|
|
if(!driveEnabled[drive] && enablePins[drive] >= 0)
|
|
{
|
|
digitalWriteNonDue(enablePins[drive], ENABLE);
|
|
driveEnabled[drive] = true;
|
|
}
|
|
digitalWriteNonDue(stepPins[drive], 0);
|
|
digitalWriteNonDue(stepPins[drive], 1);
|
|
}
|
|
|
|
// current is in mA
|
|
|
|
void Platform::SetMotorCurrent(byte drive, float current)
|
|
{
|
|
unsigned short pot = (unsigned short)(0.256*current*8.0*senseResistor/maxStepperDigipotVoltage);
|
|
// Message(HOST_MESSAGE, "Set pot to: ");
|
|
// snprintf(scratchString, STRING_LENGTH, "%d", pot);
|
|
// Message(HOST_MESSAGE, scratchString);
|
|
// Message(HOST_MESSAGE, "\n");
|
|
if(drive < 4)
|
|
{
|
|
mcpDuet.setNonVolatileWiper(potWipes[drive], pot);
|
|
mcpDuet.setVolatileWiper(potWipes[drive], pot);
|
|
}
|
|
else
|
|
{
|
|
mcpExpansion.setNonVolatileWiper(potWipes[drive], pot);
|
|
mcpExpansion.setVolatileWiper(potWipes[drive], pot);
|
|
}
|
|
}
|
|
|
|
|
|
float Platform::MotorCurrent(byte drive)
|
|
{
|
|
unsigned short pot;
|
|
if (drive < 4)
|
|
{
|
|
pot = mcpDuet.getNonVolatileWiper(potWipes[drive]);
|
|
}
|
|
else
|
|
{
|
|
pot = mcpExpansion.getNonVolatileWiper(potWipes[drive]);
|
|
}
|
|
|
|
return (float)pot * maxStepperDigipotVoltage / (0.256 * 8.0 * senseResistor);
|
|
}
|
|
|
|
// Get current cooling fan speed on a scale between 0 and 1
|
|
|
|
float Platform::GetFanValue() const
|
|
{
|
|
return coolingFanValue;
|
|
}
|
|
|
|
// This is a bit of a compromise - old RepRaps used fan speeds in the range
|
|
// [0, 255], which is very hardware dependent. It makes much more sense
|
|
// to specify speeds in [0.0, 1.0]. This looks at the value supplied (which
|
|
// the G Code reader will get right for a float or an int) and attempts to
|
|
// do the right thing whichever the user has done. This will only not work
|
|
// for an old-style fan speed of 1/255...
|
|
|
|
void Platform::SetFanValue(float speed)
|
|
{
|
|
if(coolingFanPin >= 0)
|
|
{
|
|
byte p;
|
|
|
|
if(speed <= 1.0)
|
|
{
|
|
p = (byte)(255.0 * max<float>(0.0, speed));
|
|
coolingFanValue = speed;
|
|
}
|
|
else
|
|
{
|
|
p = (byte)speed;
|
|
coolingFanValue = speed / 255.0;
|
|
}
|
|
|
|
// The cooling fan output pin gets inverted if HEAT_ON == 0
|
|
analogWriteNonDue(coolingFanPin, (HEAT_ON == 0) ? (255 - p) : p, true);
|
|
}
|
|
}
|
|
|
|
// Get current fan RPM
|
|
|
|
float Platform::GetFanRPM()
|
|
{
|
|
// The ISR sets fanInterval to the number of microseconds it took to get fanMaxInterruptCount interrupts.
|
|
// We get 2 tacho pulses per revolution, hence 2 interrupts per revolution.
|
|
// However, if the fan stops then we get no interrupts and fanInterval stops getting updated.
|
|
// We must recognise this and return zero.
|
|
return (fanInterval != 0 && micros() - fanLastResetTime < 3000000U) // if we have a reading and it is less than 3 second old
|
|
? (float)((30000000U * fanMaxInterruptCount)/fanInterval) // then calculate RPM assuming 2 interrupts per rev
|
|
: 0.0; // else assume fan is off or tacho not connected
|
|
}
|
|
|
|
// Interrupts
|
|
|
|
void Platform::SetInterrupt(float s) // Seconds
|
|
{
|
|
if (s <= 0.0)
|
|
{
|
|
//NVIC_DisableIRQ(TC3_IRQn);
|
|
Message(BOTH_ERROR_MESSAGE, "Negative interrupt!\n");
|
|
s = STANDBY_INTERRUPT_RATE;
|
|
}
|
|
uint32_t rc = (uint32_t)( (((long)(TIME_TO_REPRAP*s))*84l)/128l );
|
|
TC_SetRA(TC1, 0, rc/2); //50% high, 50% low
|
|
TC_SetRC(TC1, 0, rc);
|
|
TC_Start(TC1, 0);
|
|
NVIC_EnableIRQ(TC3_IRQn);
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------------------------------
|
|
|
|
FileStore* Platform::GetFileStore(const char* directory, const char* fileName, bool write)
|
|
{
|
|
if (!fileStructureInitialised)
|
|
return NULL;
|
|
|
|
for (int i = 0; i < MAX_FILES; i++)
|
|
{
|
|
if (!files[i]->inUse)
|
|
{
|
|
files[i]->inUse = true;
|
|
if (files[i]->Open(directory, fileName, write))
|
|
{
|
|
return files[i];
|
|
}
|
|
else
|
|
{
|
|
files[i]->inUse = false;
|
|
return NULL;
|
|
}
|
|
}
|
|
}
|
|
Message(HOST_MESSAGE, "Max open file count exceeded.\n");
|
|
return NULL;
|
|
}
|
|
|
|
MassStorage* Platform::GetMassStorage()
|
|
{
|
|
return massStorage;
|
|
}
|
|
|
|
void Platform::Message(char type, const char* message, ...)
|
|
{
|
|
va_list vargs;
|
|
va_start(vargs, message);
|
|
messageString.vprintf(message, vargs);
|
|
va_end(vargs);
|
|
Message(type, messageString);
|
|
}
|
|
|
|
void Platform::Message(char type, const StringRef& message)
|
|
{
|
|
switch(type)
|
|
{
|
|
case FLASH_LED:
|
|
// Message that is to flash an LED; the next two bytes define
|
|
// the frequency and M/S ratio.
|
|
|
|
break;
|
|
|
|
case DISPLAY_MESSAGE:
|
|
// Message that is to appear on a local display; \f and \n should be supported.
|
|
break;
|
|
|
|
case HOST_MESSAGE:
|
|
case DEBUG_MESSAGE:
|
|
// Message that is to be sent to the host via USB; the H is not sent.
|
|
if (line->GetOutputColumn() == 0)
|
|
{
|
|
for(uint8_t i = 0; i < messageIndent; i++)
|
|
{
|
|
line->Write(' ', type == DEBUG_MESSAGE);
|
|
}
|
|
}
|
|
line->Write(message.Pointer(), type == DEBUG_MESSAGE);
|
|
break;
|
|
|
|
case WEB_MESSAGE:
|
|
// Message that is to be sent to the web
|
|
reprap.GetWebserver()->MessageStringToWebInterface(message.Pointer(), false);
|
|
break;
|
|
|
|
case WEB_ERROR_MESSAGE:
|
|
// Message that is to be sent to the web - flags an error
|
|
reprap.GetWebserver()->MessageStringToWebInterface(message.Pointer(), true);
|
|
break;
|
|
|
|
case BOTH_MESSAGE:
|
|
// Message that is to be sent to the web & host
|
|
if (line->GetOutputColumn() == 0)
|
|
{
|
|
for(uint8_t i = 0; i < messageIndent; i++)
|
|
{
|
|
line->Write(' ');
|
|
}
|
|
}
|
|
line->Write(message.Pointer());
|
|
reprap.GetWebserver()->MessageStringToWebInterface(message.Pointer(), false);
|
|
break;
|
|
|
|
case BOTH_ERROR_MESSAGE:
|
|
// Message that is to be sent to the web & host - flags an error
|
|
// Make this the default behaviour too.
|
|
|
|
default:
|
|
if (line->GetOutputColumn() == 0)
|
|
{
|
|
for(uint8_t i = 0; i < messageIndent; i++)
|
|
{
|
|
line->Write(' ');
|
|
}
|
|
}
|
|
line->Write(message.Pointer());
|
|
reprap.GetWebserver()->MessageStringToWebInterface(message.Pointer(), true);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void Platform::AppendMessage(char type, const char* message, ...)
|
|
{
|
|
va_list vargs;
|
|
va_start(vargs, message);
|
|
messageString.vprintf(message, vargs);
|
|
va_end(vargs);
|
|
AppendMessage(type, messageString);
|
|
}
|
|
|
|
void Platform::AppendMessage(char type, const StringRef& message)
|
|
{
|
|
switch(type)
|
|
{
|
|
case FLASH_LED:
|
|
// Message that is to flash an LED; the next two bytes define
|
|
// the frequency and M/S ratio.
|
|
|
|
break;
|
|
|
|
case DISPLAY_MESSAGE:
|
|
// Message that is to appear on a local display; \f and \n should be supported.
|
|
|
|
break;
|
|
|
|
case HOST_MESSAGE:
|
|
case DEBUG_MESSAGE:
|
|
// Message that is to be sent to the host via USB; the H is not sent.
|
|
if (line->GetOutputColumn() == 0)
|
|
{
|
|
for(uint8_t i = 0; i < messageIndent; i++)
|
|
{
|
|
line->Write(' ', type == DEBUG_MESSAGE);
|
|
}
|
|
}
|
|
line->Write(message.Pointer(), type == DEBUG_MESSAGE);
|
|
break;
|
|
|
|
case WEB_MESSAGE:
|
|
// Message that is to be sent to the web
|
|
reprap.GetWebserver()->AppendReplyToWebInterface(message.Pointer(), false);
|
|
break;
|
|
|
|
case WEB_ERROR_MESSAGE:
|
|
// Message that is to be sent to the web - flags an error
|
|
reprap.GetWebserver()->AppendReplyToWebInterface(message.Pointer(), true);
|
|
break;
|
|
|
|
case BOTH_MESSAGE:
|
|
// Message that is to be sent to the web & host
|
|
if (line->GetOutputColumn() == 0)
|
|
{
|
|
for(uint8_t i = 0; i < messageIndent; i++)
|
|
{
|
|
line->Write(' ');
|
|
}
|
|
}
|
|
line->Write(message.Pointer());
|
|
reprap.GetWebserver()->AppendReplyToWebInterface(message.Pointer(), false);
|
|
break;
|
|
|
|
case BOTH_ERROR_MESSAGE:
|
|
// Message that is to be sent to the web & host - flags an error
|
|
// Make this the default behaviour too.
|
|
|
|
default:
|
|
if (line->GetOutputColumn() == 0)
|
|
{
|
|
for(uint8_t i = 0; i < messageIndent; i++)
|
|
{
|
|
line->Write(' ');
|
|
}
|
|
}
|
|
line->Write(message.Pointer());
|
|
reprap.GetWebserver()->AppendReplyToWebInterface(message.Pointer(), true);
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
void Platform::SetAtxPower(bool on)
|
|
{
|
|
digitalWriteNonDue(atxPowerPin, (on) ? HIGH : LOW);
|
|
}
|
|
|
|
|
|
/*********************************************************************************
|
|
|
|
Files & Communication
|
|
|
|
*/
|
|
|
|
MassStorage::MassStorage(Platform* p)
|
|
{
|
|
platform = p;
|
|
}
|
|
|
|
void MassStorage::Init()
|
|
{
|
|
hsmciPinsinit();
|
|
// Initialize SD MMC stack
|
|
sd_mmc_init();
|
|
delay(20);
|
|
int sdPresentCount = 0;
|
|
while ((CTRL_NO_PRESENT == sd_mmc_check(0)) && (sdPresentCount < 5))
|
|
{
|
|
//platform->Message(HOST_MESSAGE, "Please plug in the SD card.\n");
|
|
//delay(1000);
|
|
sdPresentCount++;
|
|
}
|
|
|
|
if (sdPresentCount >= 5)
|
|
{
|
|
platform->Message(HOST_MESSAGE, "Can't find the SD card.\n");
|
|
return;
|
|
}
|
|
|
|
//print card info
|
|
|
|
// SerialUSB.print("sd_mmc_card->capacity: ");
|
|
// SerialUSB.print(sd_mmc_get_capacity(0));
|
|
// SerialUSB.print(" bytes\n");
|
|
// SerialUSB.print("sd_mmc_card->clock: ");
|
|
// SerialUSB.print(sd_mmc_get_bus_clock(0));
|
|
// SerialUSB.print(" Hz\n");
|
|
// SerialUSB.print("sd_mmc_card->bus_width: ");
|
|
// SerialUSB.println(sd_mmc_get_bus_width(0));
|
|
|
|
memset(&fileSystem, 0, sizeof(FATFS));
|
|
//f_mount (LUN_ID_SD_MMC_0_MEM, NULL);
|
|
//int mounted = f_mount(LUN_ID_SD_MMC_0_MEM, &fileSystem);
|
|
int mounted = f_mount(0, &fileSystem);
|
|
if (mounted != FR_OK)
|
|
{
|
|
platform->Message(HOST_MESSAGE, "Can't mount filesystem 0: code %d\n", mounted);
|
|
}
|
|
}
|
|
|
|
const char* MassStorage::CombineName(const char* directory, const char* fileName)
|
|
{
|
|
int out = 0;
|
|
int in = 0;
|
|
|
|
if (directory != NULL)
|
|
{
|
|
while (directory[in] != 0 && directory[in] != '\n')
|
|
{
|
|
scratchString[out] = directory[in];
|
|
in++;
|
|
out++;
|
|
if (out >= STRING_LENGTH)
|
|
{
|
|
platform->Message(BOTH_ERROR_MESSAGE, "CombineName() buffer overflow.");
|
|
out = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (in > 0 && directory[in -1] != '/' && out < STRING_LENGTH -1)
|
|
{
|
|
scratchString[out] = '/';
|
|
out++;
|
|
}
|
|
|
|
in = 0;
|
|
while (fileName[in] != 0 && fileName[in] != '\n')
|
|
{
|
|
scratchString[out] = fileName[in];
|
|
in++;
|
|
out++;
|
|
if (out >= STRING_LENGTH)
|
|
{
|
|
platform->Message(BOTH_ERROR_MESSAGE, "CombineName() buffer overflow.");
|
|
out = 0;
|
|
}
|
|
}
|
|
scratchString[out] = 0;
|
|
|
|
return scratchString;
|
|
}
|
|
|
|
// Open a directory to read a file list. Returns true if it contains any files, false otherwise.
|
|
bool MassStorage::FindFirst(const char *directory, FileInfo &file_info)
|
|
{
|
|
TCHAR loc[64 + 1];
|
|
|
|
// Remove the trailing '/' from the directory name
|
|
size_t len = strnlen(directory, ARRAY_SIZE(loc) - 1); // the -1 ensures we have room for a null terminator
|
|
if (len == 0)
|
|
{
|
|
loc[0] = 0;
|
|
}
|
|
else if (directory[len - 1] == '/')
|
|
{
|
|
strncpy(loc, directory, len - 1);
|
|
loc[len - 1] = 0;
|
|
}
|
|
else
|
|
{
|
|
strncpy(loc, directory, len);
|
|
loc[len] = 0;
|
|
}
|
|
|
|
FRESULT res = f_opendir(&findDir, loc);
|
|
if (res == FR_OK)
|
|
{
|
|
FILINFO entry;
|
|
entry.lfname = file_info.fileName;
|
|
entry.lfsize = ARRAY_SIZE(file_info.fileName);
|
|
|
|
for(;;)
|
|
{
|
|
res = f_readdir(&findDir, &entry);
|
|
if (res != FR_OK || entry.fname[0] == 0) break;
|
|
if (StringEquals(entry.fname, ".") || StringEquals(entry.fname, "..")) continue;
|
|
|
|
file_info.isDirectory = (entry.fattrib & AM_DIR);
|
|
file_info.size = entry.fsize;
|
|
uint16_t day = entry.fdate & 0x1F;
|
|
if (day == 0)
|
|
{
|
|
// This can happen if a transfer hasn't been processed completely.
|
|
day = 1;
|
|
}
|
|
file_info.day = day;
|
|
file_info.month = (entry.fdate & 0x01E0) >> 5;
|
|
file_info.year = (entry.fdate >> 9) + 1980;
|
|
if (file_info.fileName[0] == 0)
|
|
{
|
|
strncpy(file_info.fileName, entry.fname, ARRAY_SIZE(file_info.fileName));
|
|
}
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Find the next file in a directory. Returns true if another file has been read.
|
|
bool MassStorage::FindNext(FileInfo &file_info)
|
|
{
|
|
FILINFO entry;
|
|
entry.lfname = file_info.fileName;
|
|
entry.lfsize = ARRAY_SIZE(file_info.fileName);
|
|
|
|
if (f_readdir(&findDir, &entry) != FR_OK || entry.fname[0] == 0)
|
|
{
|
|
//f_closedir(findDir);
|
|
return false;
|
|
}
|
|
|
|
file_info.isDirectory = (entry.fattrib & AM_DIR);
|
|
file_info.size = entry.fsize;
|
|
uint16_t day = entry.fdate & 0x1F;
|
|
if (day == 0)
|
|
{
|
|
// This can happen if a transfer hasn't been processed completely.
|
|
day = 1;
|
|
}
|
|
file_info.day = day;
|
|
file_info.month = (entry.fdate & 0x01E0) >> 5;
|
|
file_info.year = (entry.fdate >> 9) + 1980;
|
|
if (file_info.fileName[0] == 0)
|
|
{
|
|
strncpy(file_info.fileName, entry.fname, ARRAY_SIZE(file_info.fileName));
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Month names. The first entry is used for invalid month numbers.
|
|
static const char *monthNames[13] = { "???", "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };
|
|
|
|
// Returns the name of the specified month or '???' if the specified value is invalid.
|
|
const char* MassStorage::GetMonthName(const uint8_t month)
|
|
{
|
|
return (month <= 12) ? monthNames[month] : monthNames[0];
|
|
}
|
|
|
|
// Delete a file or directory
|
|
bool MassStorage::Delete(const char* directory, const char* fileName)
|
|
{
|
|
const char* location = (directory != NULL)
|
|
? platform->GetMassStorage()->CombineName(directory, fileName)
|
|
: fileName;
|
|
if (f_unlink(location) != FR_OK)
|
|
{
|
|
platform->Message(BOTH_ERROR_MESSAGE, "Can't delete file %s\n", location);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Create a new directory
|
|
bool MassStorage::MakeDirectory(const char *parentDir, const char *dirName)
|
|
{
|
|
const char* location = platform->GetMassStorage()->CombineName(parentDir, dirName);
|
|
if (f_mkdir(location) != FR_OK)
|
|
{
|
|
platform->Message(BOTH_ERROR_MESSAGE, "Can't create directory %s\n", location);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool MassStorage::MakeDirectory(const char *directory)
|
|
{
|
|
if (f_mkdir(directory) != FR_OK)
|
|
{
|
|
platform->Message(BOTH_ERROR_MESSAGE, "Can't create directory %s\n", directory);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Rename a file or directory
|
|
bool MassStorage::Rename(const char *oldFilename, const char *newFilename)
|
|
{
|
|
if (f_rename(oldFilename, newFilename) != FR_OK)
|
|
{
|
|
platform->Message(BOTH_ERROR_MESSAGE, "Can't rename file or directory %s to %s\n", oldFilename, newFilename);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Check if the specified directory exists
|
|
bool MassStorage::PathExists(const char *path) const
|
|
{
|
|
DIR dir;
|
|
return (f_opendir(&dir, path) == FR_OK);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------------------------
|
|
|
|
FileStore::FileStore(Platform* p) : platform(p)
|
|
{
|
|
}
|
|
|
|
void FileStore::Init()
|
|
{
|
|
bufferPointer = 0;
|
|
inUse = false;
|
|
writing = false;
|
|
lastBufferEntry = 0;
|
|
openCount = 0;
|
|
}
|
|
|
|
// Open a local file (for example on an SD card).
|
|
// This is protected - only Platform can access it.
|
|
|
|
bool FileStore::Open(const char* directory, const char* fileName, bool write)
|
|
{
|
|
const char* location = (directory != NULL)
|
|
? platform->GetMassStorage()->CombineName(directory, fileName)
|
|
: fileName;
|
|
writing = write;
|
|
lastBufferEntry = FILE_BUF_LEN - 1;
|
|
bytesRead = 0;
|
|
|
|
FRESULT openReturn = f_open(&file, location, (writing) ? FA_CREATE_ALWAYS | FA_WRITE : FA_OPEN_EXISTING | FA_READ);
|
|
if (openReturn != FR_OK)
|
|
{
|
|
platform->Message(BOTH_ERROR_MESSAGE, "Can't open %s to %s, error code %d\n", location, (writing) ? "write" : "read", openReturn);
|
|
return false;
|
|
}
|
|
|
|
bufferPointer = (writing) ? 0 : FILE_BUF_LEN;
|
|
inUse = true;
|
|
openCount = 1;
|
|
return true;
|
|
}
|
|
|
|
void FileStore::Duplicate()
|
|
{
|
|
if (!inUse)
|
|
{
|
|
platform->Message(BOTH_ERROR_MESSAGE, "Attempt to dup a non-open file.\n");
|
|
return;
|
|
}
|
|
++openCount;
|
|
}
|
|
|
|
bool FileStore::Close()
|
|
{
|
|
if (!inUse)
|
|
{
|
|
platform->Message(BOTH_ERROR_MESSAGE, "Attempt to close a non-open file.\n");
|
|
return false;
|
|
}
|
|
--openCount;
|
|
if (openCount != 0)
|
|
{
|
|
return true;
|
|
}
|
|
bool ok = true;
|
|
if (writing)
|
|
{
|
|
ok = Flush();
|
|
}
|
|
FRESULT fr = f_close(&file);
|
|
inUse = false;
|
|
writing = false;
|
|
lastBufferEntry = 0;
|
|
return ok && fr == FR_OK;
|
|
}
|
|
|
|
bool FileStore::Seek(unsigned long pos)
|
|
{
|
|
if (!inUse)
|
|
{
|
|
platform->Message(BOTH_ERROR_MESSAGE, "Attempt to seek on a non-open file.\n");
|
|
return false;
|
|
}
|
|
if (writing)
|
|
{
|
|
WriteBuffer();
|
|
}
|
|
FRESULT fr = f_lseek(&file, pos);
|
|
bufferPointer = (writing) ? 0 : FILE_BUF_LEN;
|
|
return fr == FR_OK;
|
|
}
|
|
|
|
bool FileStore::GoToEnd()
|
|
{
|
|
return Seek(Length());
|
|
}
|
|
|
|
unsigned long FileStore::Length() const
|
|
{
|
|
if (!inUse)
|
|
{
|
|
platform->Message(BOTH_ERROR_MESSAGE, "Attempt to size non-open file.\n");
|
|
return 0;
|
|
}
|
|
return file.fsize;
|
|
}
|
|
|
|
float FileStore::FractionRead() const
|
|
{
|
|
unsigned long len = Length();
|
|
if(len <= 0)
|
|
{
|
|
return 0.0;
|
|
}
|
|
|
|
return (float)bytesRead / (float)len;
|
|
}
|
|
|
|
int8_t FileStore::Status()
|
|
{
|
|
if (!inUse)
|
|
return nothing;
|
|
|
|
if (lastBufferEntry == FILE_BUF_LEN)
|
|
return byteAvailable;
|
|
|
|
if (bufferPointer < lastBufferEntry)
|
|
return byteAvailable;
|
|
|
|
return nothing;
|
|
}
|
|
|
|
bool FileStore::ReadBuffer()
|
|
{
|
|
FRESULT readStatus = f_read(&file, buf, FILE_BUF_LEN, &lastBufferEntry); // Read a chunk of file
|
|
if (readStatus)
|
|
{
|
|
platform->Message(BOTH_ERROR_MESSAGE, "Error reading file.\n");
|
|
return false;
|
|
}
|
|
bufferPointer = 0;
|
|
return true;
|
|
}
|
|
|
|
// Single character read via the buffer
|
|
bool FileStore::Read(char& b)
|
|
{
|
|
if (!inUse)
|
|
{
|
|
platform->Message(BOTH_ERROR_MESSAGE, "Attempt to read from a non-open file.\n");
|
|
return false;
|
|
}
|
|
|
|
if (bufferPointer >= FILE_BUF_LEN)
|
|
{
|
|
bool ok = ReadBuffer();
|
|
if (!ok)
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (bufferPointer >= lastBufferEntry)
|
|
{
|
|
b = 0; // Good idea?
|
|
return false;
|
|
}
|
|
|
|
b = (char) buf[bufferPointer];
|
|
bufferPointer++;
|
|
bytesRead++;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Block read, doesn't use the buffer
|
|
int FileStore::Read(char* extBuf, unsigned int nBytes)
|
|
{
|
|
if (!inUse)
|
|
{
|
|
platform->Message(BOTH_ERROR_MESSAGE, "Attempt to read from a non-open file.\n");
|
|
return -1;
|
|
}
|
|
bufferPointer = FILE_BUF_LEN; // invalidate the buffer
|
|
UINT bytes_read;
|
|
FRESULT readStatus = f_read(&file, extBuf, nBytes, &bytes_read);
|
|
if (readStatus)
|
|
{
|
|
platform->Message(BOTH_ERROR_MESSAGE, "Error reading file.\n");
|
|
return -1;
|
|
}
|
|
bytesRead += bytes_read;
|
|
return (int)bytes_read;
|
|
}
|
|
|
|
bool FileStore::WriteBuffer()
|
|
{
|
|
if (bufferPointer != 0)
|
|
{
|
|
bool ok = InternalWriteBlock((const char*)buf, bufferPointer);
|
|
if (!ok)
|
|
{
|
|
platform->Message(BOTH_ERROR_MESSAGE, "Cannot write to file. Disc may be full.\n");
|
|
return false;
|
|
}
|
|
bufferPointer = 0;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool FileStore::Write(char b)
|
|
{
|
|
if (!inUse)
|
|
{
|
|
platform->Message(BOTH_ERROR_MESSAGE, "Attempt to write byte to a non-open file.\n");
|
|
return false;
|
|
}
|
|
buf[bufferPointer] = b;
|
|
bufferPointer++;
|
|
if (bufferPointer >= FILE_BUF_LEN)
|
|
{
|
|
return WriteBuffer();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool FileStore::Write(const char* b)
|
|
{
|
|
if (!inUse)
|
|
{
|
|
platform->Message(BOTH_ERROR_MESSAGE, "Attempt to write string to a non-open file.\n");
|
|
return false;
|
|
}
|
|
int i = 0;
|
|
while (b[i])
|
|
{
|
|
if (!Write(b[i++]))
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Direct block write that bypasses the buffer. Used when uploading files.
|
|
bool FileStore::Write(const char *s, unsigned int len)
|
|
{
|
|
if (!inUse)
|
|
{
|
|
platform->Message(BOTH_ERROR_MESSAGE, "Attempt to write block to a non-open file.\n");
|
|
return false;
|
|
}
|
|
if (!WriteBuffer())
|
|
{
|
|
return false;
|
|
}
|
|
return InternalWriteBlock(s, len);
|
|
}
|
|
|
|
bool FileStore::InternalWriteBlock(const char *s, unsigned int len)
|
|
{
|
|
unsigned int bytesWritten;
|
|
uint32_t time = micros();
|
|
FRESULT writeStatus = f_write(&file, s, len, &bytesWritten);
|
|
time = micros() - time;
|
|
if (time > longestWriteTime)
|
|
{
|
|
longestWriteTime = time;
|
|
}
|
|
if ((writeStatus != FR_OK) || (bytesWritten != len))
|
|
{
|
|
platform->Message(BOTH_ERROR_MESSAGE, "Cannot write to file. Disc may be full.\n");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool FileStore::Flush()
|
|
{
|
|
if (!inUse)
|
|
{
|
|
platform->Message(BOTH_ERROR_MESSAGE, "Attempt to flush a non-open file.\n");
|
|
return false;
|
|
}
|
|
if (!WriteBuffer())
|
|
{
|
|
return false;
|
|
}
|
|
return f_sync(&file) == FR_OK;
|
|
}
|
|
|
|
float FileStore::GetAndClearLongestWriteTime()
|
|
{
|
|
float ret = (float)longestWriteTime/1000.0;
|
|
longestWriteTime = 0;
|
|
return ret;
|
|
}
|
|
|
|
uint32_t FileStore::longestWriteTime = 0;
|
|
|
|
//***************************************************************************************************
|
|
|
|
// Serial/USB class
|
|
|
|
Line::Line(Stream& p_iface) : iface(p_iface)
|
|
{
|
|
}
|
|
|
|
int8_t Line::Status() const
|
|
{
|
|
// if(alternateInput != NULL)
|
|
// return alternateInput->Status();
|
|
return inputNumChars == 0 ? nothing : byteAvailable;
|
|
}
|
|
|
|
// This is only ever called on initialisation, so we
|
|
// know the buffer won't overflow
|
|
|
|
void Line::InjectString(char* string)
|
|
{
|
|
int i = 0;
|
|
while(string[i])
|
|
{
|
|
inBuffer[(inputGetIndex + inputNumChars) % lineInBufsize] = string[i];
|
|
inputNumChars++;
|
|
i++;
|
|
}
|
|
}
|
|
|
|
int Line::Read(char& b)
|
|
{
|
|
if (inputNumChars == 0)
|
|
return 0;
|
|
b = inBuffer[inputGetIndex];
|
|
inputGetIndex = (inputGetIndex + 1) % lineInBufsize;
|
|
--inputNumChars;
|
|
return 1;
|
|
}
|
|
|
|
void Line::Init()
|
|
{
|
|
inputGetIndex = 0;
|
|
inputNumChars = 0;
|
|
outputGetIndex = 0;
|
|
outputNumChars = 0;
|
|
ignoringOutputLine = false;
|
|
inWrite = 0;
|
|
outputColumn = 0;
|
|
}
|
|
|
|
void Line::Spin()
|
|
{
|
|
// Read the serial data in blocks to avoid excessive flow control
|
|
if (inputNumChars <= lineInBufsize / 2)
|
|
{
|
|
int16_t target = iface.available() + (int16_t) inputNumChars;
|
|
if (target > lineInBufsize)
|
|
{
|
|
target = lineInBufsize;
|
|
}
|
|
while ((int16_t) inputNumChars < target)
|
|
{
|
|
int incomingByte = iface.read();
|
|
if (incomingByte < 0)
|
|
break;
|
|
inBuffer[(inputGetIndex + inputNumChars) % lineInBufsize] = (char) incomingByte;
|
|
++inputNumChars;
|
|
}
|
|
}
|
|
|
|
TryFlushOutput();
|
|
}
|
|
|
|
// Write a character to USB.
|
|
// If 'block' is true then we don't return until we have either written it to the USB port or put it in the buffer.
|
|
// Otherwise, if the buffer is full then we append ".\n" to the end of it, return immediately and ignore the rest
|
|
// of the data we are asked to print until we get a new line.
|
|
void Line::Write(char b, bool block)
|
|
{
|
|
if (b == '\n')
|
|
{
|
|
outputColumn = 0;
|
|
}
|
|
else
|
|
{
|
|
++outputColumn;
|
|
}
|
|
|
|
if (block)
|
|
{
|
|
// We failed to print an unimportant message that (unusually) didn't finish in a newline
|
|
ignoringOutputLine = false;
|
|
}
|
|
|
|
if (ignoringOutputLine)
|
|
{
|
|
// We have already failed to write some characters of this message line, so don't write any of it.
|
|
// But try to start sending again after this line finishes.
|
|
if (b == '\n')
|
|
{
|
|
ignoringOutputLine = false;
|
|
}
|
|
TryFlushOutput(); // this may help free things up
|
|
}
|
|
else
|
|
{
|
|
for(;;)
|
|
{
|
|
TryFlushOutput();
|
|
if (block)
|
|
{
|
|
iface.flush();
|
|
}
|
|
|
|
if (outputNumChars == 0 && iface.canWrite() != 0)
|
|
{
|
|
// We can write the character directly into the USB output buffer
|
|
++inWrite;
|
|
iface.write(b);
|
|
--inWrite;
|
|
break;
|
|
}
|
|
else if ( outputNumChars + 2 < lineOutBufSize // save 2 spaces in the output buffer
|
|
|| (outputNumChars < lineOutBufSize && (block || b == '\n')) //...unless doing blocking output or writing newline
|
|
)
|
|
{
|
|
outBuffer[(outputGetIndex + outputNumChars) % lineOutBufSize] = b;
|
|
++outputNumChars;
|
|
break;
|
|
}
|
|
else if (!block)
|
|
{
|
|
if (outputNumChars + 2 == lineOutBufSize)
|
|
{
|
|
// We still have our 2 free characters, so append ".\n" to the line to indicate it was incomplete
|
|
outBuffer[(outputGetIndex + outputNumChars) % lineOutBufSize] = '.';
|
|
++outputNumChars;
|
|
outBuffer[(outputGetIndex + outputNumChars) % lineOutBufSize] = '\n';
|
|
++outputNumChars;
|
|
}
|
|
else
|
|
{
|
|
// As we don't have 2 spare characters in the buffer, we can't have written any of the current line.
|
|
// So ignore the whole line.
|
|
}
|
|
ignoringOutputLine = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
TryFlushOutput();
|
|
if (block)
|
|
{
|
|
iface.flush();
|
|
}
|
|
}
|
|
// else discard the character
|
|
}
|
|
|
|
void Line::Write(const char* b, bool block)
|
|
{
|
|
while (*b)
|
|
{
|
|
Write(*b++, block);
|
|
}
|
|
}
|
|
|
|
void Line::TryFlushOutput()
|
|
{
|
|
//debug
|
|
//while (SerialUSB.canWrite() == 0) {}
|
|
//end debug
|
|
|
|
while (outputNumChars != 0 && iface.canWrite() != 0)
|
|
{
|
|
++inWrite;
|
|
iface.write(outBuffer[outputGetIndex]);
|
|
--inWrite;
|
|
outputGetIndex = (outputGetIndex + 1) % lineOutBufSize;
|
|
--outputNumChars;
|
|
}
|
|
}
|
|
|
|
// End
|