This repository has been archived on 2025-02-01. You can view files and clone it, but cannot push or open issues or pull requests.
reprapfirmware-dc42/DeltaParameters.cpp
David Crocker 87980e2966 Version 1.09f
Fixed print quality problems that mostly affected delta printers e.g. on
spiral vase cylinder
When reconnecting a browser, cancel any file upload from the same IP
address
M111 now prints the number of each module with debugging enabled or
disabled
In special moves on delta printers, the F parameter is now interpreted
as the speed of the tower that moves the most
M114 now reports stepper positions as well as head position
Default to output in Marlin mode
M104 command defaults to the only tool if there is only one tool and it
is not selected
Trying different code for M999PERASE command to see if we can get it to
unlock flash and reset more reliably
When step errors are logged, report them immediately if Move debugging
is enabled. Also reports the total number of step errors in M122.
Changed interrupt priority to make tick interrupt higher priority than
step interrupt, because we rely on the tick interrupt to check for over
temperature conditions and kick the watchdog
2015-08-22 11:01:28 +01:00

213 lines
6.8 KiB
C++

/*
* DeltaParameters.cpp
*
* Created on: 20 Apr 2015
* Author: David
*/
#include "RepRapFirmware.h"
void DeltaParameters::Init()
{
deltaMode = false;
diagonal = 0.0;
radius = 0.0;
xCorrection = yCorrection = zCorrection = 0.0;
printRadius = defaultPrintRadius;
homedHeight = defaultDeltaHomedHeight;
for (size_t axis = 0; axis < AXES; ++axis)
{
endstopAdjustments[axis] = 0.0;
towerX[axis] = towerY[axis] = 0.0;
}
}
void DeltaParameters::Recalc()
{
deltaMode = (radius > 0.0 && diagonal > radius);
if (deltaMode)
{
towerX[A_AXIS] = -(radius * cos((30 + xCorrection) * degreesToRadians));
towerY[A_AXIS] = -(radius * sin((30 + xCorrection) * degreesToRadians));
towerX[B_AXIS] = +(radius * cos((30 - yCorrection) * degreesToRadians));
towerY[B_AXIS] = -(radius * sin((30 - yCorrection) * degreesToRadians));
towerX[C_AXIS] = -(radius * sin(zCorrection * degreesToRadians));
towerY[C_AXIS] = +(radius * cos(zCorrection * degreesToRadians));
Xbc = towerX[C_AXIS] - towerX[B_AXIS];
Xca = towerX[A_AXIS] - towerX[C_AXIS];
Xab = towerX[B_AXIS] - towerX[A_AXIS];
Ybc = towerY[C_AXIS] - towerY[B_AXIS];
Yca = towerY[A_AXIS] - towerY[C_AXIS];
Yab = towerY[B_AXIS] - towerY[A_AXIS];
coreFa = fsquare(towerX[A_AXIS]) + fsquare(towerY[A_AXIS]);
coreFb = fsquare(towerX[B_AXIS]) + fsquare(towerY[B_AXIS]);
coreFc = fsquare(towerX[C_AXIS]) + fsquare(towerY[C_AXIS]);
Q = 2 * (Xca * Yab - Xab * Yca);
Q2 = fsquare(Q);
D2 = fsquare(diagonal);
// Calculate the base carriage height when the printer is homed.
const float tempHeight = diagonal; // any sensible height will do here, probably even zero
float machinePos[AXES];
InverseTransform(tempHeight + endstopAdjustments[X_AXIS], tempHeight + endstopAdjustments[Y_AXIS], tempHeight + endstopAdjustments[X_AXIS],
machinePos);
homedCarriageHeight = homedHeight + tempHeight - machinePos[Z_AXIS];
}
}
// Make the average of the endstop adjustments zero, without changing the individual homed carriage heights
void DeltaParameters::NormaliseEndstopAdjustments()
{
const float eav = (endstopAdjustments[A_AXIS] + endstopAdjustments[B_AXIS] + endstopAdjustments[C_AXIS])/3.0;
endstopAdjustments[A_AXIS] -= eav;
endstopAdjustments[B_AXIS] -= eav;
endstopAdjustments[C_AXIS] -= eav;
homedHeight += eav;
homedCarriageHeight += eav; // no need for a full recalc, this is sufficient
}
// Calculate the motor position for a single tower from a Cartesian coordinate
float DeltaParameters::Transform(const float machinePos[AXES], size_t axis) const
{
return machinePos[Z_AXIS]
+ sqrt(D2 - fsquare(machinePos[X_AXIS] - towerX[axis]) - fsquare(machinePos[Y_AXIS] - towerY[axis]));
}
void DeltaParameters::InverseTransform(float Ha, float Hb, float Hc, float machinePos[AXES]) const
{
const float Fa = coreFa + fsquare(Ha);
const float Fb = coreFb + fsquare(Hb);
const float Fc = coreFc + fsquare(Hc);
// debugPrintf("Ha=%f Hb=%f Hc=%f Fa=%f Fb=%f Fc=%f Xbc=%f Xca=%f Xab=%f Ybc=%f Yca=%f Yab=%f\n",
// Ha, Hb, Hc, Fa, Fb, Fc, Xbc, Xca, Xab, Ybc, Yca, Yab);
// Setup PQRSU such that x = -(S - uz)/P, y = (P - Rz)/Q
const float P = (Xbc * Fa) + (Xca * Fb) + (Xab * Fc);
const float S = (Ybc * Fa) + (Yca * Fb) + (Yab * Fc);
const float R = 2 * ((Xbc * Ha) + (Xca * Hb) + (Xab * Hc));
const float U = 2 * ((Ybc * Ha) + (Yca * Hb) + (Yab * Hc));
// debugPrintf("P= %f R=%f S=%f U=%f Q=%f\n", P, R, S, U, Q);
const float R2 = fsquare(R), U2 = fsquare(U);
float A = U2 + R2 + Q2;
float minusHalfB = S * U + P * R + Ha * Q2 + towerX[A_AXIS] * U * Q - towerY[A_AXIS] * R * Q;
float C = fsquare(S + towerX[A_AXIS] * Q) + fsquare(P - towerY[A_AXIS] * Q) + (fsquare(Ha) - D2) * Q2;
// debugPrintf("A=%f minusHalfB=%f C=%f\n", A, minusHalfB, C);
float z = (minusHalfB - sqrtf(fsquare(minusHalfB) - A * C)) / A;
machinePos[X_AXIS] = (U * z - S) / Q;
machinePos[Y_AXIS] = (P - R * z) / Q;
machinePos[Z_AXIS] = z;
}
// Compute the derivative of height with respect to a parameter at the specified motor endpoints.
// 'deriv' indicates the parameter as follows:
// 0, 1, 2 = X, Y, Z tower endstop adjustments
// 3 = delta radius
// 4 = X tower correction
// 5 = Y tower correction
// 6 = diagonal rod length
float DeltaParameters::ComputeDerivative(unsigned int deriv, float ha, float hb, float hc)
{
const float perturb = 0.2; // perturbation amount in mm or degrees
DeltaParameters hiParams(*this), loParams(*this);
switch(deriv)
{
case 0:
case 1:
case 2:
break;
case 3:
hiParams.radius += perturb;
loParams.radius -= perturb;
break;
case 4:
hiParams.xCorrection += perturb;
loParams.xCorrection -= perturb;
break;
case 5:
hiParams.yCorrection += perturb;
loParams.yCorrection -= perturb;
break;
case 6:
hiParams.diagonal += perturb;
loParams.diagonal -= perturb;
break;
}
hiParams.Recalc();
loParams.Recalc();
float newPos[AXES];
hiParams.InverseTransform((deriv == 0) ? ha + perturb : ha, (deriv == 1) ? hb + perturb : hb, (deriv == 2) ? hc + perturb : hc, newPos);
float zHi = newPos[Z_AXIS];
loParams.InverseTransform((deriv == 0) ? ha - perturb : ha, (deriv == 1) ? hb - perturb : hb, (deriv == 2) ? hc - perturb : hc, newPos);
float zLo = newPos[Z_AXIS];
return (zHi - zLo)/(2 * perturb);
}
// Perform 3, 4, 6 or 7-factor adjustment.
// The input vector contains the following parameters in this order:
// X, Y and Z endstop adjustments
// If we are doing 4-factor adjustment, the next argument is the delta radius. Otherwise:
// X tower X position adjustment
// Y tower X position adjustment
// Z tower Y position adjustment
// Diagonal rod length adjustment
void DeltaParameters::Adjust(size_t numFactors, const float v[])
{
const float oldCarriageHeightA = GetHomedCarriageHeight(A_AXIS); // save for later
// Update endstop adjustments
endstopAdjustments[A_AXIS] += v[0];
endstopAdjustments[B_AXIS] += v[1];
endstopAdjustments[C_AXIS] += v[2];
NormaliseEndstopAdjustments();
if (numFactors >= 4)
{
radius += v[3];
if (numFactors >= 6)
{
xCorrection += v[4];
yCorrection += v[5];
if (numFactors == 7)
{
diagonal += v[6];
}
}
Recalc();
}
// Adjusting the diagonal and the tower positions affects the homed carriage height.
// We need to adjust homedHeight to allow for this, to get the change that was requested in the endstop corrections.
const float heightError = GetHomedCarriageHeight(A_AXIS) - oldCarriageHeightA - v[0];
homedHeight -= heightError;
homedCarriageHeight -= heightError;
}
void DeltaParameters::PrintParameters(StringRef& reply) const
{
reply.printf("Endstops X%.2f Y%.2f Z%.2f, height %.2f, diagonal %.2f, radius %.2f, xcorr %.2f, ycorr %.2f, zcorr %.2f\n",
endstopAdjustments[A_AXIS], endstopAdjustments[B_AXIS], endstopAdjustments[C_AXIS], homedHeight, diagonal, radius, xCorrection, yCorrection, zCorrection);
}
// End