This repository has been archived on 2025-02-01. You can view files and clone it, but cannot push or open issues or pull requests.
reprapfirmware-dc42/Platform.cpp
David Crocker b1558648cb Movement speed fix & ultrasonic z-sensor support
1. Fixed bug whereby the first XY move after a Z move would often be at
a speed much higher than requested.
2. Added support for direct-mode ultrasonic sensor using command M558
P3. Command M558 P4 selects differential-mode ultrasonic sensor.
3. Changed temperature parameter in G31 command from T to S.
2014-03-23 22:26:41 +00:00

1780 lines
42 KiB
C++

/****************************************************************************************************
RepRapFirmware - Platform: RepRapPro Mendel with Prototype Arduino Due controller
Platform contains all the code and definitons to deal with machine-dependent things such as control
pins, bed area, number of extruders, tolerable accelerations and speeds and so on.
-----------------------------------------------------------------------------------------------------
Version 0.1
18 November 2012
Adrian Bowyer
RepRap Professional Ltd
http://reprappro.com
Licence: GPL
****************************************************************************************************/
#include "RepRapFirmware.h"
#include "DueFlashStorage.h"
#define WINDOWED_SEND_PACKETS (2)
extern char _end;
extern "C" char *sbrk(int i);
const uint8_t memPattern = 0xA5;
// Arduino initialise and loop functions
// Put nothing in these other than calls to the RepRap equivalents
void setup()
{
reprap.Init();
//reprap.GetMove()->InterruptTime(); // Uncomment this line to time the interrupt routine on startup
// Fill the free memory with a pattern so that we can check for stack usage and memory corruption
char* heapend = sbrk(0);
register const char * stack_ptr asm ("sp");
while (heapend + 16 < stack_ptr)
{
*heapend++ = memPattern;
}
}
void loop()
{
reprap.Spin();
}
extern "C"
{
// This intercepts the 1ms system tick. It must return 'false', otherwise the Arduino core tick handler will be bypassed.
int sysTickHook()
{
reprap.Tick();
return false;
}
}
//*************************************************************************************************
// PidParameters class
bool PidParameters::UsePID() const
{
return kP >= 0;
}
float PidParameters::GetThermistorR25() const
{
return thermistorInfR * exp(thermistorBeta / (25.0 - ABS_ZERO));
}
void PidParameters::SetThermistorR25AndBeta(float r25, float beta)
{
thermistorInfR = r25 * exp(-beta / (25.0 - ABS_ZERO));
thermistorBeta = beta;
}
bool PidParameters::operator==(const PidParameters& other) const
{
return kI == other.kI && kD == other.kD && kP == other.kP && fullBand == other.fullBand && iMin == other.iMin
&& iMax == other.iMax && thermistorBeta == other.thermistorBeta && thermistorInfR == other.thermistorInfR
&& thermistorSeriesR == other.thermistorSeriesR && adcLowOffset == other.adcLowOffset
&& adcHighOffset == other.adcHighOffset;
}
//*************************************************************************************************
// Platform class
Platform::Platform() :
tickState(0), fileStructureInitialised(false), active(false), errorCodeBits(0)
{
line = new Line();
// Files
massStorage = new MassStorage(this);
for (int8_t i = 0; i < MAX_FILES; i++)
{
files[i] = new FileStore(this);
}
network = new Network();
}
//*******************************************************************************************************************
void Platform::Init()
{
DueFlashStorage::init();
DueFlashStorage::read(nvAddress, &nvData, sizeof(nvData));
if (nvData.magic != FlashData::magicValue)
{
// Nonvolatile data has not been initialized since the firmware was last written, so set up default values
nvData.compatibility = me;
nvData.ipAddress = IP_ADDRESS;
nvData.netMask = NET_MASK;
nvData.gateWay = GATE_WAY;
nvData.zProbeType = 0; // Default is to use the switch
nvData.irZProbeParameters.Init();
nvData.ultrasonicZProbeParameters.Init();
for (size_t i = 0; i < HEATERS; ++i)
{
PidParameters& pp = nvData.pidParams[i];
pp.thermistorSeriesR = defaultThermistorSeriesRs[i];
pp.SetThermistorR25AndBeta(defaultThermistor25RS[i], defaultThermistorBetas[i]);
pp.kI = defaultPidKis[i];
pp.kD = defaultPidKds[i];
pp.kP = defaultPidKps[i];
pp.fullBand = defaultFullBand[i];
pp.iMin = defaultIMin[i];
pp.iMax = defaultIMax[i];
pp.adcLowOffset = pp.adcHighOffset = 0.0;
}
nvData.magic = FlashData::magicValue;
}
line->Init();
messageIndent = 0;
massStorage->Init();
for (size_t i = 0; i < MAX_FILES; i++)
{
files[i]->Init();
}
fileStructureInitialised = true;
mcp.begin();
sysDir = SYS_DIR;
configFile = CONFIG_FILE;
// DRIVES
stepPins = STEP_PINS;
directionPins = DIRECTION_PINS;
enablePins = ENABLE_PINS;
disableDrives = DISABLE_DRIVES;
lowStopPins = LOW_STOP_PINS;
highStopPins = HIGH_STOP_PINS;
maxFeedrates = MAX_FEEDRATES;
accelerations = ACCELERATIONS;
driveStepsPerUnit = DRIVE_STEPS_PER_UNIT;
instantDvs = INSTANT_DVS;
potWipes = POT_WIPES;
senseResistor = SENSE_RESISTOR;
maxStepperDigipotVoltage = MAX_STEPPER_DIGIPOT_VOLTAGE;
// Z PROBE
zProbePin = Z_PROBE_PIN;
zProbeModulationPin = Z_PROBE_MOD_PIN;
zProbeAdcChannel = PinToAdcChannel(zProbePin);
InitZProbe();
// AXES
axisLengths = AXIS_LENGTHS;
homeFeedrates = HOME_FEEDRATES;
headOffsets = HEAD_OFFSETS;
// HEATERS - Bed is assumed to be the first
tempSensePins = TEMP_SENSE_PINS;
heatOnPins = HEAT_ON_PINS;
heatSampleTime = HEAT_SAMPLE_TIME;
standbyTemperatures = STANDBY_TEMPERATURES;
activeTemperatures = ACTIVE_TEMPERATURES;
coolingFanPin = COOLING_FAN_PIN;
webDir = WEB_DIR;
gcodeDir = GCODE_DIR;
tempDir = TEMP_DIR;
for (size_t i = 0; i < DRIVES; i++)
{
if (stepPins[i] >= 0)
{
if (i > Z_AXIS)
pinModeNonDue(stepPins[i], OUTPUT);
else
pinMode(stepPins[i], OUTPUT);
}
if (directionPins[i] >= 0)
{
if (i > Z_AXIS)
pinModeNonDue(directionPins[i], OUTPUT);
else
pinMode(directionPins[i], OUTPUT);
}
if (enablePins[i] >= 0)
{
if (i >= Z_AXIS)
pinModeNonDue(enablePins[i], OUTPUT);
else
pinMode(enablePins[i], OUTPUT);
}
Disable(i);
driveEnabled[i] = false;
}
for (size_t i = 0; i < AXES; i++)
{
if (lowStopPins[i] >= 0)
{
pinMode(lowStopPins[i], INPUT);
digitalWrite(lowStopPins[i], HIGH); // Turn on pullup
}
if (highStopPins[i] >= 0)
{
pinMode(highStopPins[i], INPUT);
digitalWrite(highStopPins[i], HIGH); // Turn on pullup
}
}
for (size_t i = 0; i < HEATERS; i++)
{
if (heatOnPins[i] >= 0)
{
if (i == 0) // heater 0 (bed heater) is a standard Arduino PWM pin
{
pinMode(heatOnPins[i], OUTPUT);
}
else
{
pinModeNonDue(heatOnPins[i], OUTPUT);
}
}
thermistorFilters[i].Init();
heaterAdcChannels[i] = PinToAdcChannel(tempSensePins[i]);
// Calculate and store the ADC average sum that corresponds to an overheat condition, so that we can check is quickly in the tick ISR
float thermistorOverheatResistance = nvData.pidParams[i].GetRInf()
* exp(-nvData.pidParams[i].GetBeta() / (BAD_HIGH_TEMPERATURE - ABS_ZERO));
float thermistorOverheatAdcValue = (adRangeReal + 1) * thermistorOverheatResistance
/ (thermistorOverheatResistance + nvData.pidParams[i].thermistorSeriesR);
thermistorOverheatSums[i] = (uint32_t) (thermistorOverheatAdcValue + 0.9) * numThermistorReadingsAveraged;
}
if (coolingFanPin >= 0)
{
pinMode(coolingFanPin, OUTPUT);
analogWrite(coolingFanPin, (HEAT_ON == 0) ? 255 : 0); // turn auxiliary cooling fan off
}
InitialiseInterrupts();
addToTime = 0.0;
lastTimeCall = 0;
lastTime = Time();
longWait = lastTime;
}
void Platform::InitZProbe()
{
zProbeOnFilter.Init();
zProbeOffFilter.Init();
ResetZProbeMinSum();
if (nvData.zProbeType == 1 || nvData.zProbeType == 2)
{
pinMode(zProbeModulationPin, OUTPUT);
digitalWrite(zProbeModulationPin, HIGH); // enable the IR LED
SetZProbing(false);
}
else if (nvData.zProbeType == 3 || nvData.zProbeType == 4)
{
pinMode(zProbeModulationPin, OUTPUT);
digitalWrite(zProbeModulationPin, LOW); // enable the ultrasonic sensor
SetZProbing(false);
}
}
int Platform::GetRawZHeight() const
{
return (nvData.zProbeType != 0) ? analogRead(zProbePin) : 0;
}
// Return the Z probe data.
// The ADC readings are 12 bits, so we convert them to 10-bit readings for compatibility with the old firmware.
int Platform::ZProbe()
{
if (zProbeOnFilter.IsValid() && zProbeOffFilter.IsValid())
{
switch (nvData.zProbeType)
{
case 1:
case 3:
// Simple IR sensor, or direct-mode ultrasonic sensor
return (int) ((zProbeOnFilter.GetSum() + zProbeOffFilter.GetSum()) / (8 * numZProbeReadingsAveraged));
case 2:
// Modulated IR sensor. We assume that zProbeOnFilter and zprobeOffFilter average the same number of readings.
// Because of noise, it is possible to get a negative reading, so allow for this.
return (int) (((int32_t) zProbeOnFilter.GetSum() - (int32_t) zProbeOffFilter.GetSum())
/ (4 * numZProbeReadingsAveraged));
case 4:
// Ultrasonic sensor in differential mode. We assume that zProbeOnFilter and zprobeOffFilter average the same number of readings.
{
uint32_t sum = zProbeOnFilter.GetSum() + zProbeOffFilter.GetSum();
if (sum < zProbeMinSum)
{
zProbeMinSum = sum;
}
uint32_t total = zProbeOnFilter.GetSum() + zProbeOffFilter.GetSum();
return (int) ((total - zProbeMinSum) / (4 * numZProbeReadingsAveraged));
}
default:
break;
}
}
return 0; // Z probe not turned on or not initialised yet
}
// Return the Z probe secondary values.
int Platform::GetZProbeSecondaryValues(int& v1, int& v2)
{
if (zProbeOnFilter.IsValid() && zProbeOffFilter.IsValid())
{
switch (nvData.zProbeType)
{
case 2: // modulated IR sensor
v1 = (int) (zProbeOnFilter.GetSum() / (4 * numZProbeReadingsAveraged)); // pass back the reading with IR turned on
return 1;
case 4: // differential ultrasonic
{
uint32_t sum = zProbeOnFilter.GetSum() + zProbeOffFilter.GetSum();
if (sum < zProbeMinSum)
{
zProbeMinSum = sum;
}
v1 = (int) ((zProbeOnFilter.GetSum() + zProbeOffFilter.GetSum()) / (8 * numZProbeReadingsAveraged));// pass back the raw reading
v2 = (int) (zProbeMinSum / (8 * numZProbeReadingsAveraged)); // pass back the minimum found
}
return 2;
default:
break;
}
}
return 0;
}
int Platform::GetZProbeType() const
{
return nvData.zProbeType;
}
float Platform::ZProbeStopHeight() const
{
switch (nvData.zProbeType)
{
case 1:
case 2:
return nvData.irZProbeParameters.GetStopHeight(GetTemperature(0));
case 3:
case 4:
return nvData.ultrasonicZProbeParameters.GetStopHeight(GetTemperature(0));
default:
return 0;
}
}
void Platform::SetZProbeType(int pt)
{
int newZProbeType = (pt >= 0 && pt <= 4) ? pt : 0;
if (newZProbeType != nvData.zProbeType)
{
nvData.zProbeType = newZProbeType;
WriteNvData();
}
InitZProbe();
}
bool Platform::GetZProbeParameters(struct ZProbeParameters& params) const
{
switch (nvData.zProbeType)
{
case 1:
case 2:
params = nvData.irZProbeParameters;
return true;
case 3:
case 4:
params = nvData.ultrasonicZProbeParameters;
return true;
default:
return false;
}
}
bool Platform::SetZProbeParameters(const struct ZProbeParameters& params)
{
switch (nvData.zProbeType)
{
case 1:
case 2:
if (nvData.irZProbeParameters != params)
{
nvData.irZProbeParameters = params;
WriteNvData();
}
return true;
case 3:
case 4:
if (nvData.ultrasonicZProbeParameters != params)
{
nvData.ultrasonicZProbeParameters = params;
WriteNvData();
}
return true;
default:
return false;
}
}
// Return true if we must hoe X and U before we home Z (i.e. we are using an IR probe)
bool Platform::MustHomeXYBeforeZ() const
{
return nvData.zProbeType == 1 || nvData.zProbeType == 2;
}
void Platform::WriteNvData()
{
DueFlashStorage::write(nvAddress, &nvData, sizeof(nvData));
}
void Platform::SetZProbing(bool starting)
{
if (starting && nvData.zProbeType == 3)
{
ResetZProbeMinSum(); // look for a new minimum
// Tell the ultrasonic sensor we are starting or have completed a z-probe
//digitalWrite(zProbeModulationPin, (starting) ? LOW : HIGH);
}
}
void Platform::ResetZProbeMinSum()
{
zProbeMinSum = adRangeReal * numZProbeReadingsAveraged * 2;
}
float Platform::Time()
{
unsigned long now = micros();
if (now < lastTimeCall) // Has timer overflowed?
addToTime += ((float) ULONG_MAX) * TIME_FROM_REPRAP;
lastTimeCall = now;
return addToTime + TIME_FROM_REPRAP * (float) now;
}
void Platform::Exit()
{
Message(HOST_MESSAGE, "Platform class exited.\n");
active = false;
}
Compatibility Platform::Emulating() const
{
if (nvData.compatibility == reprapFirmware)
return me;
return nvData.compatibility;
}
void Platform::SetEmulating(Compatibility c)
{
if (c != me && c != reprapFirmware && c != marlin)
{
Message(HOST_MESSAGE, "Attempt to emulate unsupported firmware.\n");
return;
}
if (c == reprapFirmware)
{
c = me;
}
if (nvData.compatibility != c)
{
nvData.compatibility = c;
WriteNvData();
}
}
void Platform::UpdateNetworkAddress(byte dst[4], const byte src[4])
{
bool changed = false;
for (uint8_t i = 0; i < 4; i++)
{
if (dst[i] != src[i])
{
dst[i] = src[i];
changed = true;
}
}
if (changed)
{
WriteNvData();
}
}
void Platform::SetIPAddress(byte ip[])
{
UpdateNetworkAddress(nvData.ipAddress, ip);
}
void Platform::SetGateWay(byte gw[])
{
UpdateNetworkAddress(nvData.gateWay, gw);
}
void Platform::SetNetMask(byte nm[])
{
UpdateNetworkAddress(nvData.netMask, nm);
}
void Platform::StartNetwork()
{
network->Init();
}
void Platform::Spin()
{
if (!active)
return;
network->Spin();
line->Spin();
if (Time() - lastTime < 0.006)
return;
lastTime = Time();
ClassReport("Platform", longWait);
}
//*****************************************************************************************************************
// Interrupts
void TC3_Handler()
{
TC_GetStatus(TC1, 0);
reprap.Interrupt();
}
void Platform::InitialiseInterrupts()
{
// Timer interrupt for stepper motors
pmc_set_writeprotect(false);
pmc_enable_periph_clk((uint32_t) TC3_IRQn);
TC_Configure(TC1, 0, TC_CMR_WAVE | TC_CMR_WAVSEL_UP_RC | TC_CMR_TCCLKS_TIMER_CLOCK4);
TC1 ->TC_CHANNEL[0].TC_IER = TC_IER_CPCS;
TC1 ->TC_CHANNEL[0].TC_IDR = ~TC_IER_CPCS;
SetInterrupt(STANDBY_INTERRUPT_RATE);
// Tick interrupt for ADC conversions
tickState = 0;
currentHeater = 0;
const uint32_t wdtTicks = 256; // number of watchdog ticks @ 32768Hz/128 before the watchdog times out (max 4095)
WDT_Enable(WDT, (wdtTicks << WDT_MR_WDV_Pos) | (wdtTicks << WDT_MR_WDD_Pos) | WDT_MR_WDRSTEN);
// enable watchdog, reset the mcu if it times out
active = true; // this enables the tick interrupt, which keeps the watchdog happy
}
void Platform::DisableInterrupts()
{
NVIC_DisableIRQ(TC3_IRQn);
}
// Process a 1ms tick interrupt
// This function must be kept fast so as not to disturb the stepper timing, so don't do any floating point maths in here.
// This is what we need to do:
// 0. Kick the watchdog.
// 1. Kick off a new ADC conversion.
// 2. Fetch and process the result of the last ADC conversion.
// 3a. If the last ADC conversion was for the Z probe, toggle the modulation output if using a modulated IR sensor,
// or update the minimum reading if using an ultrasonic sensor.
// 3b. If the last ADC reading was a thermistor reading, check for an over-temperature situation and turn off the heater if necessary.
// We do this here because the usual polling loop sometimes gets stuck trying to send data to the USB port.
//#define TIME_TICK_ISR 1 // define this to store thr tick IST time in errorCodeBits
void Platform::Tick()
{
#ifdef TIME_TICK_ISR
uint32_t now = micros();
#endif
WDT_Restart(WDT );
switch (tickState)
{
case 1: // last conversion started was a thermistor
case 3:
{
ThermistorAveragingFilter& currentFilter =
const_cast<ThermistorAveragingFilter&>(thermistorFilters[currentHeater]);
currentFilter.ProcessReading(GetAdcReading(heaterAdcChannels[currentHeater]));
StartAdcConversion(zProbeAdcChannel);
if (currentFilter.IsValid())
{
uint32_t sum = currentFilter.GetSum();
if (sum < thermistorOverheatSums[currentHeater]
|| sum >= adDisconnectedReal * numThermistorReadingsAveraged)
{
// We have an over-temperature or bad reading from this thermistor, so turn off the heater
// NB - the function we call does floating point maths, but this is an exceptional situation so we allow it
SetHeater(currentHeater, 0.0);
errorCodeBits |= ErrorBadTemp;
}
}
++currentHeater;
if (currentHeater == HEATERS)
{
currentHeater = 0;
}
}
++tickState;
break;
case 2: // last conversion started was the Z probe, with IR LED on
const_cast<ZProbeAveragingFilter&>(zProbeOnFilter).ProcessReading(GetAdcReading(zProbeAdcChannel));
StartAdcConversion(heaterAdcChannels[currentHeater]); // read a thermistor
if (nvData.zProbeType == 2) // if using a modulated IR sensor
{
digitalWrite(Z_PROBE_MOD_PIN, LOW); // turn off the IR emitter
}
++tickState;
break;
case 4: // last conversion started was the Z probe, with IR LED off if modulation is enabled
const_cast<ZProbeAveragingFilter&>(zProbeOffFilter).ProcessReading(GetAdcReading(zProbeAdcChannel));
// no break
case 0: // this is the state after initialisation, no conversion has been started
default:
StartAdcConversion(heaterAdcChannels[currentHeater]); // read a thermistor
if (nvData.zProbeType == 2) // if using a modulated IR sensor
{
digitalWrite(Z_PROBE_MOD_PIN, HIGH); // turn on the IR emitter
}
tickState = 1;
break;
}
#ifdef TIME_TICK_ISR
uint32_t now2 = micros();
if (now2 - now > errorCodeBits)
{
errorCodeBits = now2 - now;
}
#endif
}
/*static*/uint16_t Platform::GetAdcReading(adc_channel_num_t chan)
{
uint16_t rslt = (uint16_t) adc_get_channel_value(ADC, chan);
adc_disable_channel(ADC, chan);
return rslt;
}
/*static*/void Platform::StartAdcConversion(adc_channel_num_t chan)
{
adc_enable_channel(ADC, chan);
adc_start(ADC );
}
// Convert an Arduino Due pin number to the corresponding ADC channel number
/*static*/adc_channel_num_t Platform::PinToAdcChannel(int pin)
{
if (pin < A0)
{
pin += A0;
}
return (adc_channel_num_t) (int) g_APinDescription[pin].ulADCChannelNumber;
}
//*************************************************************************************************
void Platform::Diagnostics()
{
Message(HOST_MESSAGE, "Platform Diagnostics:\n");
}
void Platform::SetDebug(int d)
{
switch (d)
{
case 1001: // test watchdog
SysTick ->CTRL &= ~(SysTick_CTRL_TICKINT_Msk); // disable the system tick interrupt
break;
default:
break;
}
}
// Print memory stats and error codes to USB and copy them to the current webserver reply
void Platform::PrintMemoryUsage()
{
const char *ramstart = (char *) 0x20070000;
const char *ramend = (char *) 0x20088000;
const char *heapend = sbrk(0);
register const char * stack_ptr asm ("sp");
const struct mallinfo mi = mallinfo();
Message(HOST_MESSAGE, "\n");
Message(HOST_MESSAGE, "Memory usage:\n\n");
snprintf(scratchString, STRING_LENGTH, "Program static ram used: %d\n", &_end - ramstart);
reprap.GetWebserver()->HandleReply(scratchString, false);
Message(HOST_MESSAGE, scratchString);
snprintf(scratchString, STRING_LENGTH, "Dynamic ram used: %d\n", mi.uordblks);
reprap.GetWebserver()->AppendReply(scratchString);
Message(HOST_MESSAGE, scratchString);
snprintf(scratchString, STRING_LENGTH, "Recycled dynamic ram: %d\n", mi.fordblks);
reprap.GetWebserver()->AppendReply(scratchString);
Message(HOST_MESSAGE, scratchString);
snprintf(scratchString, STRING_LENGTH, "Current stack ram used: %d\n", ramend - stack_ptr);
reprap.GetWebserver()->AppendReply(scratchString);
Message(HOST_MESSAGE, scratchString);
const char* stack_lwm = heapend;
while (stack_lwm < stack_ptr && *stack_lwm == memPattern)
{
++stack_lwm;
}
snprintf(scratchString, STRING_LENGTH, "Maximum stack ram used: %d\n", ramend - stack_lwm);
reprap.GetWebserver()->AppendReply(scratchString);
Message(HOST_MESSAGE, scratchString);
snprintf(scratchString, STRING_LENGTH, "Never used ram: %d\n", stack_lwm - heapend);
reprap.GetWebserver()->AppendReply(scratchString);
Message(HOST_MESSAGE, scratchString);
// Show the reason for the last reset
const char* resetReasons[8] =
{ "power up", "backup", "watchdog", "software", "external", "?", "?", "?" };
snprintf(scratchString, STRING_LENGTH, "Last reset reason: %s\n",
resetReasons[(REG_RSTC_SR & RSTC_SR_RSTTYP_Msk)>> RSTC_SR_RSTTYP_Pos]);
reprap.GetWebserver()->AppendReply(scratchString);
Message(HOST_MESSAGE, scratchString);
// Show the current error codes
snprintf(scratchString, STRING_LENGTH, "Error status: %u\n", errorCodeBits);
reprap.GetWebserver()->AppendReply(scratchString);
Message(HOST_MESSAGE, scratchString);
}
void Platform::ClassReport(char* className, float &lastTime)
{
if (!reprap.Debug())
return;
if (Time() - lastTime < LONG_TIME)
return;
lastTime = Time();
snprintf(scratchString, STRING_LENGTH, "Class %s spinning.\n", className);
Message(HOST_MESSAGE, scratchString);
}
//===========================================================================
//=============================Thermal Settings ============================
//===========================================================================
// See http://en.wikipedia.org/wiki/Thermistor#B_or_.CE.B2_parameter_equation
// BETA is the B value
// RS is the value of the series resistor in ohms
// R_INF is R0.exp(-BETA/T0), where R0 is the thermistor resistance at T0 (T0 is in kelvin)
// Normally T0 is 298.15K (25 C). If you write that expression in brackets in the #define the compiler
// should compute it for you (i.e. it won't need to be calculated at run time).
// If the A->D converter has a range of 0..1023 and the measured voltage is V (between 0 and 1023)
// then the thermistor resistance, R = V.RS/(1024 - V)
// and the temperature, T = BETA/ln(R/R_INF)
// To get degrees celsius (instead of kelvin) add -273.15 to T
//#define THERMISTOR_R_INFS ( THERMISTOR_25_RS*exp(-THERMISTOR_BETAS/298.15) ) // Compute in Platform constructor
// Result is in degrees celsius
float Platform::GetTemperature(size_t heater) const
{
// If the ADC reading is N then for an ideal ADC, the input voltage is at least N/(AD_RANGE + 1) and less than (N + 1)/(AD_RANGE + 1), times the analog reference.
// So we add 0.5 to to the reading to get a better estimate of the input. But first, recognise the special case of thermistor disconnected.
int rawTemp = GetRawTemperature(heater);
if (rawTemp >= adDisconnectedVirtual)
{
// Thermistor is disconnected
return ABS_ZERO;
}
float reading = (float) rawTemp + 0.5;
const PidParameters& p = nvData.pidParams[heater];
// Correct for the low and high ADC offsets
reading -= p.adcLowOffset;
reading *= (adRangeVirtual + 1) / (adRangeVirtual + 1 + p.adcHighOffset - p.adcLowOffset);
float resistance = reading * p.thermistorSeriesR / ((adRangeVirtual + 1) - reading);
return (resistance <= p.GetRInf()) ? 2000.0 // thermistor short circuit, return a high temperature
: ABS_ZERO + p.GetBeta() / log(resistance / p.GetRInf());
}
void Platform::SetPidParameters(size_t heater, const PidParameters& params)
{
if (heater < HEATERS && params != nvData.pidParams[heater])
{
nvData.pidParams[heater] = params;
WriteNvData();
}
}
const PidParameters& Platform::GetPidParameters(size_t heater)
{
return nvData.pidParams[heater];
}
// power is a fraction in [0,1]
void Platform::SetHeater(size_t heater, const float& power)
{
if (heatOnPins[heater] < 0)
return;
byte p = (byte) (255.0 * fmin(1.0, fmax(0.0, power)));
if (HEAT_ON == 0)
p = 255 - p;
if (heater == 0)
analogWrite(heatOnPins[heater], p);
else
analogWriteNonDue(heatOnPins[heater], p);
}
EndStopHit Platform::Stopped(int8_t drive)
{
if (nvData.zProbeType > 0)
{ // Z probe is used for both X and Z.
if (drive != Y_AXIS)
{
int zProbeVal = ZProbe();
int zProbeADValue =
(nvData.zProbeType == 3 || nvData.zProbeType == 4) ?
nvData.ultrasonicZProbeParameters.adcValue : nvData.irZProbeParameters.adcValue;
if (zProbeVal >= zProbeADValue)
return lowHit;
else if (zProbeVal * 10 >= zProbeADValue * 9) // if we are at/above 90% of the target value
return lowNear;
else
return noStop;
}
}
if (lowStopPins[drive] >= 0)
{
if (digitalRead(lowStopPins[drive]) == ENDSTOP_HIT)
return lowHit;
}
if (highStopPins[drive] >= 0)
{
if (digitalRead(highStopPins[drive]) == ENDSTOP_HIT)
return highHit;
}
return noStop;
}
//-----------------------------------------------------------------------------------------------------
FileStore* Platform::GetFileStore(const char* directory, const char* fileName, bool write)
{
FileStore* result = NULL;
if (!fileStructureInitialised)
return NULL;
for (int i = 0; i < MAX_FILES; i++)
if (!files[i]->inUse)
{
files[i]->inUse = true;
if (files[i]->Open(directory, fileName, write))
return files[i];
else
{
files[i]->inUse = false;
return NULL;
}
}
Message(HOST_MESSAGE, "Max open file count exceeded.\n");
return NULL;
}
MassStorage* Platform::GetMassStorage()
{
return massStorage;
}
void Platform::ReturnFileStore(FileStore* fs)
{
for (int i = 0; i < MAX_FILES; i++)
if (files[i] == fs)
{
files[i]->inUse = false;
return;
}
}
void Platform::Message(char type, const char* message)
{
switch (type)
{
case FLASH_LED:
// Message that is to flash an LED; the next two bytes define
// the frequency and M/S ratio.
break;
case DISPLAY_MESSAGE:
// Message that is to appear on a local display; \f and \n should be supported.
case HOST_MESSAGE:
default:
// FileStore* m = GetFileStore(GetWebDir(), MESSAGE_FILE, true);
// if(m != NULL)
// {
// m->GoToEnd();
// m->Write(message);
// m->Close();
// } else
// line->Write("Can't open message file.\n");
for (uint8_t i = 0; i < messageIndent; i++)
line->Write(' ');
line->Write(message);
}
}
/*********************************************************************************
Files & Communication
*/
MassStorage::MassStorage(Platform* p)
{
platform = p;
}
void MassStorage::Init()
{
hsmciPinsinit();
// Initialize SD MMC stack
sd_mmc_init();
delay(20);
int sdPresentCount = 0;
while ((CTRL_NO_PRESENT == sd_mmc_check(0)) && (sdPresentCount < 5))
{
//platform->Message(HOST_MESSAGE, "Please plug in the SD card.\n");
//delay(1000);
sdPresentCount++;
}
if (sdPresentCount >= 5)
{
platform->Message(HOST_MESSAGE, "Can't find the SD card.\n");
return;
}
//print card info
// SerialUSB.print("sd_mmc_card->capacity: ");
// SerialUSB.print(sd_mmc_get_capacity(0));
// SerialUSB.print(" bytes\n");
// SerialUSB.print("sd_mmc_card->clock: ");
// SerialUSB.print(sd_mmc_get_bus_clock(0));
// SerialUSB.print(" Hz\n");
// SerialUSB.print("sd_mmc_card->bus_width: ");
// SerialUSB.println(sd_mmc_get_bus_width(0));
memset(&fileSystem, 0, sizeof(FATFS));
//f_mount (LUN_ID_SD_MMC_0_MEM, NULL);
//int mounted = f_mount(LUN_ID_SD_MMC_0_MEM, &fileSystem);
int mounted = f_mount(0, &fileSystem);
if (mounted != FR_OK)
{
platform->Message(HOST_MESSAGE, "Can't mount filesystem 0: code ");
snprintf(scratchString, STRING_LENGTH, "%d", mounted);
platform->Message(HOST_MESSAGE, scratchString);
platform->Message(HOST_MESSAGE, "\n");
}
}
const char* MassStorage::CombineName(const char* directory, const char* fileName)
{
int out = 0;
int in = 0;
// scratchString[out] = '/';
// out++;
if (directory != NULL)
{
//if(directory[in] == '/')
// in++;
while (directory[in] != 0 && directory[in] != '\n') // && directory[in] != '/')
{
scratchString[out] = directory[in];
in++;
out++;
if (out >= STRING_LENGTH)
{
platform->Message(HOST_MESSAGE, "CombineName() buffer overflow.");
out = 0;
}
}
}
//scratchString[out] = '/';
// out++;
in = 0;
while (fileName[in] != 0 && fileName[in] != '\n') // && fileName[in] != '/')
{
scratchString[out] = fileName[in];
in++;
out++;
if (out >= STRING_LENGTH)
{
platform->Message(HOST_MESSAGE, "CombineName() buffer overflow.");
out = 0;
}
}
scratchString[out] = 0;
return scratchString;
}
// List the flat files in a directory. No sub-directories or recursion.
const char* MassStorage::FileList(const char* directory, bool fromLine)
{
// File dir, entry;
DIR dir;
FILINFO entry;
FRESULT res;
char loc[64];
int len = 0;
char fileListBracket = FILE_LIST_BRACKET;
char fileListSeparator = FILE_LIST_SEPARATOR;
if (fromLine)
{
if (platform->Emulating() == marlin)
{
fileListBracket = 0;
fileListSeparator = '\n';
}
}
len = strlen(directory);
strncpy(loc, directory, len - 1);
loc[len - 1] = 0;
// if(reprap.debug()) {
// platform->Message(HOST_MESSAGE, "Opening: ");
// platform->Message(HOST_MESSAGE, loc);
// platform->Message(HOST_MESSAGE, "\n");
// }
res = f_opendir(&dir, loc);
if (res == FR_OK)
{
// if(reprap.debug()) {
// platform->Message(HOST_MESSAGE, "Directory open\n");
// }
int p = 0;
// int q;
int foundFiles = 0;
f_readdir(&dir, 0);
while ((f_readdir(&dir, &entry) == FR_OK) && (foundFiles < MAX_FILES))
{
foundFiles++;
if (strlen(entry.fname) > 0)
{
int q = 0;
if (fileListBracket)
fileList[p++] = fileListBracket;
while (entry.fname[q])
{
fileList[p++] = entry.fname[q];
//SerialUSB.print(entry.fname[q]);
q++;
if (p >= FILE_LIST_LENGTH - 10) // Caution...
{
platform->Message(HOST_MESSAGE, "FileList - directory: ");
platform->Message(HOST_MESSAGE, directory);
platform->Message(HOST_MESSAGE, " has too many files!\n");
return "";
}
}
if (fileListBracket)
fileList[p++] = fileListBracket;
fileList[p++] = fileListSeparator;
}
}
if (foundFiles <= 0)
return "NONE";
fileList[--p] = 0; // Get rid of the last separator
return fileList;
}
return "";
}
// Delete a file
bool MassStorage::Delete(const char* directory, const char* fileName)
{
const char* location = platform->GetMassStorage()->CombineName(directory, fileName);
if (f_unlink(location) != FR_OK)
{
platform->Message(HOST_MESSAGE, "Can't delete file ");
platform->Message(HOST_MESSAGE, location);
platform->Message(HOST_MESSAGE, "\n");
return false;
}
return true;
}
//------------------------------------------------------------------------------------------------
FileStore::FileStore(Platform* p)
{
platform = p;
}
void FileStore::Init()
{
bufferPointer = 0;
inUse = false;
writing = false;
lastBufferEntry = 0;
}
// Open a local file (for example on an SD card).
// This is protected - only Platform can access it.
bool FileStore::Open(const char* directory, const char* fileName, bool write)
{
const char* location = platform->GetMassStorage()->CombineName(directory, fileName);
writing = write;
lastBufferEntry = FILE_BUF_LEN - 1;
FRESULT openReturn;
if (writing)
{
openReturn = f_open(&file, location, FA_CREATE_ALWAYS | FA_WRITE);
if (openReturn != FR_OK)
{
platform->Message(HOST_MESSAGE, "Can't open ");
platform->Message(HOST_MESSAGE, location);
platform->Message(HOST_MESSAGE, " to write to. Error code: ");
snprintf(scratchString, STRING_LENGTH, "%d", openReturn);
platform->Message(HOST_MESSAGE, scratchString);
platform->Message(HOST_MESSAGE, "\n");
return false;
}
bufferPointer = 0;
}
else
{
openReturn = f_open(&file, location, FA_OPEN_EXISTING | FA_READ);
if (openReturn != FR_OK)
{
platform->Message(HOST_MESSAGE, "Can't open ");
platform->Message(HOST_MESSAGE, location);
platform->Message(HOST_MESSAGE, " to read from. Error code: ");
snprintf(scratchString, STRING_LENGTH, "%d", openReturn);
platform->Message(HOST_MESSAGE, scratchString);
platform->Message(HOST_MESSAGE, "\n");
return false;
}
bufferPointer = FILE_BUF_LEN;
}
inUse = true;
return true;
}
void FileStore::Close()
{
if (writing)
WriteBuffer();
f_close(&file);
platform->ReturnFileStore(this);
inUse = false;
writing = false;
lastBufferEntry = 0;
}
void FileStore::GoToEnd()
{
if (!inUse)
{
platform->Message(HOST_MESSAGE, "Attempt to seek on a non-open file.\n");
return;
}
unsigned long e = Length();
f_lseek(&file, e);
}
unsigned long FileStore::Length()
{
if (!inUse)
{
platform->Message(HOST_MESSAGE, "Attempt to size non-open file.\n");
return 0;
}
return file.fsize;
return 0;
}
int8_t FileStore::Status()
{
if (!inUse)
return nothing;
if (lastBufferEntry == FILE_BUF_LEN)
return byteAvailable;
if (bufferPointer < lastBufferEntry)
return byteAvailable;
return nothing;
}
void FileStore::ReadBuffer()
{
FRESULT readStatus;
readStatus = f_read(&file, buf, FILE_BUF_LEN, &lastBufferEntry); // Read a chunk of file
if (readStatus)
{
platform->Message(HOST_MESSAGE, "Error reading file.\n");
}
bufferPointer = 0;
}
bool FileStore::Read(char& b)
{
if (!inUse)
{
platform->Message(HOST_MESSAGE, "Attempt to read from a non-open file.\n");
return false;
}
if (bufferPointer >= FILE_BUF_LEN)
ReadBuffer();
if (bufferPointer >= lastBufferEntry)
{
b = 0; // Good idea?
return false;
}
b = (char) buf[bufferPointer];
bufferPointer++;
return true;
}
void FileStore::WriteBuffer()
{
FRESULT writeStatus;
writeStatus = f_write(&file, buf, bufferPointer, &lastBufferEntry);
if ((writeStatus != FR_OK) || (lastBufferEntry != bufferPointer))
{
platform->Message(HOST_MESSAGE, "Error writing file. Disc may be full.\n");
}
bufferPointer = 0;
}
void FileStore::Write(char b)
{
if (!inUse)
{
platform->Message(HOST_MESSAGE, "Attempt to write byte to a non-open file.\n");
return;
}
buf[bufferPointer] = b;
bufferPointer++;
if (bufferPointer >= FILE_BUF_LEN)
WriteBuffer();
}
void FileStore::Write(const char* b)
{
if (!inUse)
{
platform->Message(HOST_MESSAGE, "Attempt to write string to a non-open file.\n");
return;
}
int i = 0;
while (b[i])
Write(b[i++]);
}
//***************************************************************************************************
// Serial/USB class
Line::Line()
{
}
void Line::Init()
{
getIndex = 0;
numChars = 0;
// alternateInput = NULL;
// alternateOutput = NULL;
SerialUSB.begin(BAUD_RATE);
//while (!SerialUSB.available());
}
void Line::Spin()
{
// Read the serial data in blocks to avoid excessive flow control
if (numChars <= lineBufsize / 2)
{
int16_t target = SerialUSB.available() + (int16_t) numChars;
if (target > lineBufsize)
{
target = lineBufsize;
}
while ((int16_t) numChars < target)
{
int incomingByte = SerialUSB.read();
if (incomingByte < 0)
break;
buffer[(getIndex + numChars) % lineBufsize] = (char) incomingByte;
++numChars;
}
}
}
//***************************************************************************************************
// Network/Ethernet class
// C calls to interface with LWIP (http://savannah.nongnu.org/projects/lwip/)
// These are implemented in, and called from, a modified version of httpd.c
// in the network directory.
extern "C"
{
//void ResetEther();
// Transmit data to the Network
void RepRapNetworkSendOutput(char* data, int length, void* pbuf, void* pcb, void* hs);
// When lwip releases storage, set the local copy of the pointer to 0 to stop
// it being used again.
void RepRapNetworkInputBufferReleased(void* pb)
{
reprap.GetPlatform()->GetNetwork()->InputBufferReleased(pb);
}
void RepRapNetworkConnectionError(void* h)
{
reprap.GetPlatform()->GetNetwork()->ConnectionError(h);
reprap.GetWebserver()->ConnectionError();
}
// Called to put out a message via the RepRap firmware.
void RepRapNetworkMessage(char* s)
{
reprap.GetPlatform()->Message(HOST_MESSAGE, s);
}
// Called to push data into the RepRap firmware.
void RepRapNetworkReceiveInput(char* data, int length, void* pbuf, void* pcb, void* hs)
{
reprap.GetPlatform()->GetNetwork()->ReceiveInput(data, length, pbuf, pcb, hs);
}
// Called when transmission of outgoing data is complete to allow
// the RepRap firmware to write more.
void RepRapNetworkSentPacketAcknowledged()
{
reprap.GetPlatform()->GetNetwork()->SentPacketAcknowledged();
}
bool RepRapNetworkHasALiveClient()
{
return reprap.GetPlatform()->GetNetwork()->Status() & clientLive;
}
} // extern "C"
Network::Network()
{
active = false;
ethPinsInit();
//ResetEther();
// Construct the ring buffer
netRingAddPointer = new NetRing(NULL);
netRingGetPointer = netRingAddPointer;
for (int8_t i = 1; i < HTTP_STATE_SIZE; i++)
netRingGetPointer = new NetRing(netRingGetPointer);
netRingAddPointer->SetNext(netRingGetPointer);
}
// Reset the network to its disconnected and ready state.
void Network::Reset()
{
//reprap.GetPlatform()->Message(HOST_MESSAGE, "Reset.\n");
inputPointer = 0;
inputLength = -1;
outputPointer = 0;
writeEnabled = false;
closePending = false;
status = nothing;
sentPacketsOutstanding = 0;
}
void Network::CleanRing()
{
for (int8_t i = 0; i <= HTTP_STATE_SIZE; i++)
{
netRingGetPointer->Free();
netRingGetPointer = netRingGetPointer->Next();
}
netRingAddPointer = netRingGetPointer;
}
void Network::Init()
{
CleanRing();
Reset();
init_ethernet(reprap.GetPlatform()->IPAddress(), reprap.GetPlatform()->NetMask(), reprap.GetPlatform()->GateWay());
active = true;
sentPacketsOutstanding = 0;
}
void Network::Spin()
{
if (!active)
{
//ResetEther();
return;
}
// Keep the Ethernet running
ethernet_task();
// Anything come in from the network to act on?
if (!netRingGetPointer->Active())
return;
// Finished reading the active ring element?
if (!netRingGetPointer->ReadFinished())
{
// No - Finish reading any data that's been received.
if (inputPointer < inputLength)
return;
// Haven't started reading it yet - set that up.
inputPointer = 0;
inputLength = netRingGetPointer->Length();
inputBuffer = netRingGetPointer->Data();
}
}
// Webserver calls this to read bytes that have come in from the network
bool Network::Read(char& b)
{
if (inputPointer >= inputLength)
{
inputLength = -1;
inputPointer = 0;
netRingGetPointer->SetReadFinished(); // Past tense...
SetWriteEnable(true);
//reprap.GetPlatform()->Message(HOST_MESSAGE, "Network - data read.\n");
return false;
}
b = inputBuffer[inputPointer];
inputPointer++;
return true;
}
// Webserver calls this to write bytes that need to go out to the network
void Network::Write(char b)
{
// Check for horrible things...
if (!CanWrite())
{
reprap.GetPlatform()->Message(HOST_MESSAGE, "Network::Write(char b) - Attempt to write when disabled.\n");
return;
}
if (outputPointer >= ARRAY_SIZE(outputBuffer))
{
reprap.GetPlatform()->Message(HOST_MESSAGE, "Network::Write(char b) - Output buffer overflow! \n");
return;
}
// Add the byte to the buffer
outputBuffer[outputPointer] = b;
outputPointer++;
// Buffer full? If so, send it.
if (outputPointer == ARRAY_SIZE(outputBuffer))
{
#if WINDOWED_SEND_PACKETS > 1
++sentPacketsOutstanding;
#else
SetWriteEnable(false); // Stop further writing from Webserver until the network tells us that this has gone
#endif
RepRapNetworkSendOutput(outputBuffer, outputPointer, netRingGetPointer->Pbuf(), netRingGetPointer->Pcb(),
netRingGetPointer->Hs());
outputPointer = 0;
}
}
void Network::InputBufferReleased(void* pb)
{
if (netRingGetPointer->Pbuf() != pb)
{
reprap.GetPlatform()->Message(HOST_MESSAGE, "Network::InputBufferReleased() - Pointers don't match!\n");
return;
}
netRingGetPointer->ReleasePbuf();
}
void Network::ConnectionError(void* h)
{
// h points to an http state block that the caller is about to release, so we need to stop referring to it.
// The state block is usually but not always in use by the current http request being processed, in which case we abandon the current request.
if (netRingGetPointer != netRingAddPointer && netRingGetPointer->Hs() == h)
{
netRingGetPointer->Free();
netRingGetPointer = netRingGetPointer->Next();
}
// Reset the network layer. In particular, this clears the output buffer to make sure nothing more gets sent,
// and sets status to 'nothing' so that we can accept another connection attempt.
Reset();
}
void Network::ReceiveInput(char* data, int length, void* pbuf, void* pcb, void* hs)
{
status = clientLive;
if (netRingAddPointer->Active())
{
reprap.GetPlatform()->Message(HOST_MESSAGE, "Network::ReceiveInput() - Ring buffer full!\n");
return;
}
netRingAddPointer->Set(data, length, pbuf, pcb, hs);
netRingAddPointer = netRingAddPointer->Next();
//reprap.GetPlatform()->Message(HOST_MESSAGE, "Network - input received.\n");
}
bool Network::CanWrite() const
{
#if WINDOWED_SEND_PACKETS > 1
return writeEnabled && sentPacketsOutstanding < WINDOWED_SEND_PACKETS;
#else
return writeEnabled;
#endif
}
void Network::SetWriteEnable(bool enable)
{
writeEnabled = enable;
if (!writeEnabled)
return;
if (closePending)
Close();
}
void Network::SentPacketAcknowledged()
{
#if WINDOWED_SEND_PACKETS > 1
if (sentPacketsOutstanding != 0)
{
--sentPacketsOutstanding;
}
if (closePending && sentPacketsOutstanding == 0)
{
Close();
}
#else
SetWriteEnable(true);
#endif
}
// This is not called for data, only for internally-
// generated short strings at the start of a transmission,
// so it should never overflow the buffer (which is checked
// anyway).
void Network::Write(const char* s)
{
int i = 0;
while (s[i])
Write(s[i++]);
}
void Network::Close()
{
if (Status() && clientLive)
{
if (outputPointer > 0)
{
SetWriteEnable(false);
RepRapNetworkSendOutput(outputBuffer, outputPointer, netRingGetPointer->Pbuf(), netRingGetPointer->Pcb(),
netRingGetPointer->Hs());
outputPointer = 0;
closePending = true;
return;
}
RepRapNetworkSendOutput((char*) NULL, 0, netRingGetPointer->Pbuf(), netRingGetPointer->Pcb(),
netRingGetPointer->Hs());
netRingGetPointer->Free();
netRingGetPointer = netRingGetPointer->Next();
//reprap.GetPlatform()->Message(HOST_MESSAGE, "Network - output sent and closed.\n");
}
else
reprap.GetPlatform()->Message(HOST_MESSAGE, "Network::Close() - Attempt to close a closed connection!\n");
closePending = false;
status = nothing;
//Reset();
}
int8_t Network::Status() const
{
if (inputPointer >= inputLength)
return status;
return status | clientConnected | byteAvailable;
}
NetRing::NetRing(NetRing* n)
{
next = n;
Free();
}
void NetRing::Free()
{
pbuf = 0;
pcb = 0;
hs = 0;
data = "";
length = 0;
read = false;
active = false;
}
bool NetRing::Set(char* d, int l, void* pb, void* pc, void* h)
{
if (active)
return false;
pbuf = pb;
pcb = pc;
hs = h;
data = d;
length = l;
read = false;
active = true;
return true;
}
NetRing* NetRing::Next()
{
return next;
}
char* NetRing::Data()
{
return data;
}
int NetRing::Length()
{
return length;
}
bool NetRing::ReadFinished()
{
return read;
}
void NetRing::SetReadFinished()
{
read = true;
}
bool NetRing::Active()
{
return active;
}
void NetRing::SetNext(NetRing* n)
{
next = n;
}
void* NetRing::Pbuf()
{
return pbuf;
}
void NetRing::ReleasePbuf()
{
pbuf = 0;
}
void* NetRing::Pcb()
{
return pcb;
}
void* NetRing::Hs()
{
return hs;
}
void NetRing::ReleaseHs()
{
hs = 0;
}