This repository has been archived on 2025-02-01. You can view files and clone it, but cannot push or open issues or pull requests.
reprapfirmware-dc42/src/Movement/DriveMovement.h
David Crocker 88e3092b78 Version 1.17 dev 4
Support concurrenrt execution of commands form different channels
M143 now supports individual temperature limits per heater
Fixed issue with dely of up to 2 seconds when switching Duet WiFi heater
channel 3 to servo mode
When enable polarity is set using the M569 R parameter, disable the
corresponding drive
Add exdperimental S99 option on G1 command to log probe changes (Duet
WiFi only)
2016-11-17 21:29:20 +00:00

165 lines
6.3 KiB
C++

/*
* DriveMovement.h
*
* Created on: 17 Jan 2015
* Author: David
*/
#ifndef DRIVEMOVEMENT_H_
#define DRIVEMOVEMENT_H_
class DDA;
// Struct for passing parameters to the DriveMovement Prepare methods
struct PrepParams
{
float decelStartDistance;
uint32_t startSpeedTimesCdivA;
uint32_t topSpeedTimesCdivA;
uint32_t decelStartClocks;
uint32_t topSpeedTimesCdivAPlusDecelStartClocks;
uint32_t accelClocksMinusAccelDistanceTimesCdivTopSpeed;
float compFactor;
};
enum class DMState : uint8_t
{
idle = 0,
moving = 1,
stepError = 2
};
// This class describes a single movement of one drive
class DriveMovement
{
public:
bool CalcNextStepTimeCartesian(const DDA &dda, bool live);
bool CalcNextStepTimeDelta(const DDA &dda, bool live);
void PrepareCartesianAxis(const DDA& dda, const PrepParams& params);
void PrepareDeltaAxis(const DDA& dda, const PrepParams& params);
void PrepareExtruder(const DDA& dda, const PrepParams& params, bool doCompensation);
void ReduceSpeed(const DDA& dda, float inverseSpeedFactor);
void DebugPrint(char c, bool withDelta) const;
int32_t GetNetStepsLeft() const;
private:
bool CalcNextStepTimeCartesianFull(const DDA &dda, bool live);
bool CalcNextStepTimeDeltaFull(const DDA &dda, bool live);
public:
// Parameters common to Cartesian, delta and extruder moves
// The following only need to be stored per-drive if we are supporting pressure advance
uint64_t twoDistanceToStopTimesCsquaredDivA;
uint32_t startSpeedTimesCdivA;
int32_t accelClocksMinusAccelDistanceTimesCdivTopSpeed; // this one can be negative
uint32_t topSpeedTimesCdivAPlusDecelStartClocks;
// These values don't depend on how the move is executed, so are set by Init()
uint32_t totalSteps; // total number of steps for this move
uint8_t drive; // the drive that this DM controls
DMState state; // whether this is active or not
bool direction; // true=forwards, false=backwards
uint8_t stepsTillRecalc; // how soon we need to recalculate
// These values change as the step is executed
uint32_t nextStep; // number of steps already done
uint32_t reverseStartStep; // the step number for which we need to reverse direction due to pressure advance or delta movement
uint32_t nextStepTime; // how many clocks after the start of this move the next step is due
uint32_t stepInterval; // how many clocks between steps
DriveMovement *nextDM; // link to next DM that needs a step
// Parameters unique to a style of move (Cartesian, delta or extruder). Currently, extruders and Cartesian moves use the same parameters.
union MoveParams
{
struct CartesianParameters // Parameters for Cartesian and extruder movement, including extruder pressure advance
{
// The following don't depend on how the move is executed, so they could be set up in Init()
uint64_t twoCsquaredTimesMmPerStepDivA; // 2 * clock^2 * mmPerStepInHyperCuboidSpace / acceleration
// The following depend on how the move is executed, so they must be set up in Prepare()
uint32_t accelStopStep; // the first step number at which we are no longer accelerating
uint32_t decelStartStep; // the first step number at which we are decelerating
uint32_t mmPerStepTimesCdivtopSpeed; // mmPerStepInHyperCuboidSpace * clock / topSpeed
// The following only need to be stored per-drive if we are supporting pressure advance
int64_t fourMaxStepDistanceMinusTwoDistanceToStopTimesCsquaredDivA; // this one can be negative
} cart;
struct DeltaParameters // Parameters for delta movement
{
// The following don't depend on how the move is executed, so they can be set up in Init
int64_t dSquaredMinusAsquaredMinusBsquaredTimesKsquaredSsquared;
int32_t hmz0sK; // the starting step position less the starting Z height, multiplied by the Z movement fraction and K (can go negative)
int32_t minusAaPlusBbTimesKs;
uint32_t twoCsquaredTimesMmPerStepDivAK; // this could be stored in the DDA if all towers use the same steps/mm
// The following depend on how the move is executed, so they must be set up in Prepare()
uint32_t accelStopDsK;
uint32_t decelStartDsK;
uint32_t mmPerStepTimesCdivtopSpeedK;
} delta;
} mp;
static const uint32_t NoStepTime = 0xFFFFFFFF; // value to indicate that no further steps are needed when calculating the next step time
static const uint32_t K1 = 1024; // a power of 2 used to multiply the value mmPerStepTimesCdivtopSpeed to reduce rounding errors
static const uint32_t K2 = 512; // a power of 2 used in delta calculations to reduce rounding errors (but too large makes things worse)
static const int32_t Kc = 1024 * 1024; // a power of 2 for scaling the Z movement fraction
};
// Calculate and store the time since the start of the move when the next step for the specified DriveMovement is due.
// Return true if there are more steps to do.
// This is also used for extruders on delta machines.
// We inline this part to speed things up when we are doing double/quad/octal stepping.
inline bool DriveMovement::CalcNextStepTimeCartesian(const DDA &dda, bool live)
{
if (nextStep < totalSteps)
{
++nextStep;
if (stepsTillRecalc != 0)
{
--stepsTillRecalc; // we are doing double/quad/octal stepping
return true;
}
return CalcNextStepTimeCartesianFull(dda, live);
}
state = DMState::idle;
return false;
}
// Calculate the time since the start of the move when the next step for the specified DriveMovement is due
// Return true if there are more steps to do
inline bool DriveMovement::CalcNextStepTimeDelta(const DDA &dda, bool live)
{
if (nextStep < totalSteps)
{
++nextStep;
if (stepsTillRecalc != 0)
{
--stepsTillRecalc; // we are doing double or quad stepping
return true;
}
else
{
return CalcNextStepTimeDeltaFull(dda, live);
}
}
state = DMState::idle;
return false;
}
// Return the number of net steps left for the move in the forwards direction.
inline int32_t DriveMovement::GetNetStepsLeft() const
{
const int32_t netStepsLeft =
( (nextStep >= reverseStartStep || reverseStartStep >= totalSteps)
? totalSteps // no reverse due, or we have already reversed
: 2 * reverseStartStep - totalSteps // we have yet to reverse
)
- nextStep + 1;
return (direction) ? netStepsLeft : -netStepsLeft;
}
#endif /* DRIVEMOVEMENT_H_ */