This repository has been archived on 2025-02-01. You can view files and clone it, but cannot push or open issues or pull requests.
reprapfirmware-dc42/Move.ino

674 lines
16 KiB
C++

/****************************************************************************************************
RepRapFirmware - Move
This is all the code to deal with movement and kinematics.
-----------------------------------------------------------------------------------------------------
Version 0.1
18 November 2012
Adrian Bowyer
RepRap Professional Ltd
http://reprappro.com
Licence: GPL
****************************************************************************************************/
#include "RepRapFirmware.h"
Move::Move(Platform* p, GCodes* g)
{
char i;
active = false;
platform = p;
gCodes = g;
// Build the DDA ring
ddaRingAddPointer = new DDA(this, platform, NULL);
dda = ddaRingAddPointer;
for(i = 1; i < RING_LENGTH; i++)
dda = new DDA(this, platform, dda);
ddaRingAddPointer->next = dda;
dda = NULL;
lookAheadRingAddPointer = new LookAhead(this, platform, NULL);
lookAheadRingGetPointer = lookAheadRingAddPointer;
for(i = 1; i < RING_LENGTH; i++)
lookAheadRingGetPointer = new LookAhead(this, platform, lookAheadRingGetPointer);
lookAheadRingAddPointer->next = lookAheadRingGetPointer;
// Set the backwards pointers
lookAheadRingGetPointer = lookAheadRingAddPointer;
for(i = 0; i <= RING_LENGTH; i++)
{
lookAheadRingAddPointer = lookAheadRingAddPointer->Next();
lookAheadRingAddPointer->previous = lookAheadRingGetPointer;
lookAheadRingGetPointer = lookAheadRingAddPointer;
}
lookAheadDDA = new DDA(this, platform, NULL);
}
void Move::Init()
{
unsigned char i, j;
for(i = 0; i < DRIVES; i++)
platform->SetDirection(i, FORWARDS);
for(i = 0; i <= AXES; i++)
currentPosition[i] = 0.0;
currentFeedrate = START_FEED_RATE;
// Empty the rings
ddaRingGetPointer = ddaRingAddPointer;
ddaRingLocked = false;
lookAheadRingGetPointer = lookAheadRingAddPointer;
lookAheadRingCount = 0;
addNoMoreMoves = false;
larWaiting = NULL;
// Put the origin on the lookahead ring so it corresponds with currentPosition
for(i = 0; i < DRIVES; i++)
nextMove[i] = 0.0;
nextMove[DRIVES] = currentFeedrate;
LookAheadRingAdd(nextMove, 0.0, 0.0);
// Now remove it from the ring; it will remain as what is now the
// previous move, so the first real move will see that as
// the place to move from.
LookAheadRingGet();
// The stepDistances arrays are look-up tables of the Euclidean distance
// between the start and end of a step. If the step is just along one axis,
// it's just that axis's step length. If it's more, it is a Pythagoran
// sum of all the axis steps that take part.
float d, e;
for(i = 0; i < (1<<AXES); i++)
{
d = 0.0;
for(j = 0; j < AXES; j++)
{
if(i & (1<<j))
{
e = 1.0/platform->DriveStepsPerUnit(j);
d += e*e;
}
}
stepDistances[i] = sqrt(d);
}
for(i = 0; i < (1<<(DRIVES-AXES)); i++)
{
d = 0.0;
for(j = 0; j < (DRIVES-AXES); j++)
{
if(i & (1<<j))
{
e = 1.0/platform->DriveStepsPerUnit(AXES + j);
d += e*e;
}
}
extruderStepDistances[i] = sqrt(d);
}
// We don't want 0. If no axes/extruders are moving these should never be used.
// But try to be safe.
stepDistances[0] = 1.0/platform->DriveStepsPerUnit(AXES);
extruderStepDistances[0] = stepDistances[0];
currentFeedrate = START_FEED_RATE;
moveWaiting = false;
lastTime = platform->Time();
active = true;
}
void Move::Exit()
{
active = false;
}
void Move::Spin()
{
if(!active)
return;
//FIXME
float u = 0.0; // This will provoke the code to select the jerk values.
float v = 0.0;
if(larWaiting != NULL)
{
u = larWaiting->U();
v = larWaiting->V();
if(DDARingAdd(larWaiting->Previous()->Movement(), larWaiting->Movement(), u, v))
larWaiting = NULL;
} else
{
larWaiting = LookAheadRingGet();
}
if(moveWaiting)
{
if(!addNoMoreMoves)
{
if(LookAheadRingAdd(nextMove, u, v))
{
for(char i = 0; i < AXES; i++)
currentPosition[i] = nextMove[i];
currentFeedrate = nextMove[DRIVES];
moveWaiting = false;
}
}
} else
{
moveWaiting = gCodes->ReadMove(nextMove);
}
}
boolean Move::GetCurrentState(float m[])
{
if(DDARingFull())
return false;
for(char i = 0; i < DRIVES; i++)
{
if(i < AXES)
m[i] = currentPosition[i];
else
m[i] = 0.0;
}
m[DRIVES] = currentFeedrate;
return true;
}
boolean Move::DDARingAdd(float currentPosition[], float targetPosition[], float& u, float& v)
{
if(GetDDARingLock())
{
if(DDARingFull())
{
ReleaseDDARingLock();
return false;
}
if(ddaRingAddPointer->Active())
{
platform->Message(HOST_MESSAGE, "Attempt to alter an active ring buffer entry!\n");
ReleaseDDARingLock();
return false;
}
if(ddaRingAddPointer->Init(currentPosition, targetPosition, u, v) == nothing)
{
// Throw it away
ReleaseDDARingLock();
return true;
}
ddaRingAddPointer = ddaRingAddPointer->Next();
ReleaseDDARingLock();
return true;
}
return false;
}
DDA* Move::DDARingGet()
{
DDA* result = NULL;
if(GetDDARingLock())
{
if(DDARingEmpty())
{
ReleaseDDARingLock();
return NULL;
}
result = ddaRingGetPointer;
ddaRingGetPointer = ddaRingGetPointer->Next();
ReleaseDDARingLock();
return result;
}
return NULL;
}
void Move::Interrupt()
{
// Have we got a live DDA?
if(dda == NULL)
{
// No - see if a new one is available.
dda = DDARingGet();
if(dda != NULL)
dda->Start(true); // Yes - got it. So fire it up.
return;
}
// We have a DDA. Has it finished?
if(dda->Active())
{
// No - it's still live. Step it and return.
dda->Step(true);
return;
}
// Yes - it's finished. Throw it away so the code above will then find a new one.
// (N.B. This is not a memory leak. The DDAs are stored in the ring buffer, initialised
// on boot, and never renewed or overwritten. dda is just a copied pointer.)
dda = NULL;
}
boolean Move::LookAheadRingAdd(float m[], float uu, float vv)
{
if(LookAheadRingFull())
return false;
lookAheadRingAddPointer->Init(m, uu, vv);
lookAheadRingAddPointer = lookAheadRingAddPointer->Next();
lookAheadRingCount++;
return true;
}
LookAhead* Move::LookAheadRingGet()
{
LookAhead* result;
if(LookAheadRingEmpty())
return NULL;
result = lookAheadRingGetPointer;
if(!result->Processed())
return NULL;
lookAheadRingGetPointer = lookAheadRingGetPointer->Next();
lookAheadRingCount--;
return result;
}
// This function is never normally called. It is a test to time
// the interrupt function. To activate it, uncomment the line that calls
// this in Platform.ino.
void Move::InterruptTime()
{
char buffer[50];
float a[] = {1.0, 2.0, 3.0, 4.0, 5.0};
float b[] = {2.0, 3.0, 4.0, 5.0, 6.0};
float u = 50;
float v = 50;
lookAheadDDA->Init(a, b, u, v);
lookAheadDDA->Start(false);
unsigned long t = platform->Time();
for(long i = 0; i < 100000; i++)
lookAheadDDA->Step(false);
t = platform->Time() - t;
platform->Message(HOST_MESSAGE, "Time for 100000 calls of the interrupt function: ");
sprintf(buffer, "%ld", t);
platform->Message(HOST_MESSAGE, buffer);
platform->Message(HOST_MESSAGE, " microseconds.\n");
}
//****************************************************************************************************
DDA::DDA(Move* m, Platform* p, DDA* n)
{
active = false;
move = m;
platform = p;
next = n;
}
/*
DDA::Init(...)
Sets up the DDA to take us between two positions and extrude states.
The start velocity is u, and the end one is v. The requested maximum feedrate
is in targetPosition[DRIVES].
Almost everything that needs to be done to set this up is also useful
for GCode look-ahead, so this one function is used for both. It flags when
u and v cannot be satisfied with the distance available and reduces them
proportionately to give values that can just be achieved, which is why they
are passed by reference.
The return value is true for an actual move, false for a zero-length (i.e. null) move.
Every drive has an acceleration associated with it, so when more than one drive is
moving there have to be rules of precedence that say which acceleration (and which
jerk value) to use.
The rules are these:
if Z is moving
Use Z acceleration
else if X and/or Y are moving
Use X acceleration
else
Use the acceleration for the extruder that's moving.
In the case of multiple extruders moving at once, their minimum acceleration (and its
associated jerk) are used. The variables axesMoving and extrudersMoving track what's
going on. The bits in the char axesMoving are ORed:
msb -> 00000ZYX <- lsb
a 1 meaning that that axis is moving. The bits of extrudersMoving contain a similar
pattern for the moving extruders.
Note that all this assumes that X and Y accelerations are equal, though in fact there is a
value stored for each.
In the case of only extruders moving, the distance moved is taken to be the Pythagoran distance in
the configuration space of the extruders.
TODO: Worry about having more than eight extruders...
*/
MovementProfile DDA::Init(float currentPosition[], float targetPosition[], float& u, float& v)
{
char drive;
active = false;
MovementProfile result = nothing;
totalSteps = -1;
distance = 0.0; // X+Y+Z
float eDistance = 0.0;
float d;
unsigned char axesMoving = 0;
unsigned char extrudersMoving = 0;
// How far are we going, both in steps and in mm?
for(drive = 0; drive < DRIVES; drive++)
{
if(drive < AXES)
{
d = targetPosition[drive] - currentPosition[drive]; //Absolute
distance += d*d;
delta[drive] = (long)(d*platform->DriveStepsPerUnit(drive));
if(delta[drive])
axesMoving |= 1<<drive;
} else
{
delta[drive] = (long)(targetPosition[drive]*platform->DriveStepsPerUnit(drive)); // Relative
eDistance += targetPosition[drive]*targetPosition[drive];
if(delta[drive])
extrudersMoving |= 1<<(drive - AXES);
}
if(delta[drive] >= 0)
directions[drive] = FORWARDS;
else
directions[drive] = BACKWARDS;
delta[drive] = abs(delta[drive]);
// Keep track of the biggest drive move in totalSteps
if(delta[drive] > totalSteps)
totalSteps = delta[drive];
}
// Not going anywhere?
if(totalSteps <= 0)
return result;
// Set up the DDA
result = moving;
counter[0] = totalSteps/2;
for(drive = 1; drive < DRIVES; drive++)
counter[drive] = counter[0];
// Acceleration and velocity calculations
distance = sqrt(distance);
if(axesMoving & (1<<Z_AXIS)) // Z involved?
{
acceleration = platform->Acceleration(Z_AXIS);
jerk = platform->Jerk(Z_AXIS);
} else if(axesMoving) // X or Y involved?
{
acceleration = platform->Acceleration(X_AXIS);
jerk = platform->Jerk(X_AXIS);
} else // Must be extruders only
{
acceleration = FLT_MAX; // Slight hack
distance = sqrt(eDistance);
for(drive = AXES; drive < DRIVES; drive++)
{
if(extrudersMoving & (1<<(drive - AXES)))
{
if(platform->Acceleration(drive) < acceleration)
{
acceleration = platform->Acceleration(drive);
jerk = platform->Jerk(drive);
}
}
}
}
// If velocities requested are (almost) zero, set them to the jerk
if(v < 0.01) // Set change here?
v = jerk;
if(u < 0.01)
u = jerk;
// At which DDA step should we stop accelerating? targetPosition[DRIVES] contains
// the desired feedrate.
d = 0.5*(targetPosition[DRIVES]*targetPosition[DRIVES] - u*u)/acceleration; // d = (v1^2 - v0^2)/2a
stopAStep = (long)((d*totalSteps)/distance);
// At which DDA step should we start decelerating?
d = 0.5*(v*v - targetPosition[DRIVES]*targetPosition[DRIVES])/acceleration; // This should be 0 or negative...
startDStep = totalSteps + (long)((d*totalSteps)/distance);
// If acceleration stop is at or after deceleration start, then the distance moved
// is not enough to get to full speed.
if(stopAStep >= startDStep)
{
result = noFlat;
// Work out the point at which to stop accelerating and then
// immediately start decelerating.
dCross = 0.5*(0.5*(v*v - u*u)/acceleration + distance);
if(dCross < 0.0 || dCross > distance)
{
// With the acceleration available, it is not possible
// to satisfy u and v within the distance; reduce u and v
// proportionately to get ones that work and flag the fact.
// The result is two velocities that can just be accelerated
// or decelerated between over the distance to get
// from one to the other.
result = change;
float k = v/u;
u = 2.0*acceleration*distance/(k*k - 1);
if(u >= 0.0)
{
u = sqrt(u);
v = k*u;
} else
{
v = sqrt(-u);
u = v/k;
}
dCross = 0.5*(0.5*(v*v - u*u)/acceleration + distance);
}
// The DDA steps at which acceleration stops and deceleration starts
stopAStep = (long)((dCross*totalSteps)/distance);
startDStep = stopAStep + 1;
}
// The initial velocity
velocity = u;
// Sanity check
if(velocity <= 0.0)
{
velocity = 1.0;
platform->Message(HOST_MESSAGE, "DDA.Init(): Zero or negative initial velocity!");
}
// How far have we gone?
stepCount = 0;
// Guess that the first DDA move will be in roughly the direction
// recorded in axesMoving. This is a simple heuristic, and any
// small error will be forgotten with the very next step.
timeStep = move->stepDistances[axesMoving]/velocity;
return result;
}
void DDA::Start(boolean noTest)
{
for(char drive = 0; drive < DRIVES; drive++)
platform->SetDirection(drive, directions[drive]);
if(noTest)
platform->SetInterrupt((long)(1.0e6*timeStep));
active = true;
}
void DDA::Step(boolean noTest)
{
if(!active && noTest)
return;
unsigned char axesMoving = 0;
unsigned char extrudersMoving = 0;
for(char drive = 0; drive < DRIVES; drive++)
{
counter[drive] += delta[drive];
if(counter[drive] > 0)
{
if(noTest)
platform->Step(drive);
counter[drive] -= totalSteps;
if(drive < AXES)
axesMoving |= 1<<drive;
else
extrudersMoving |= 1<<(drive - AXES);
}
}
// Simple Euler integration to get velocities.
// Maybe one day do a Runge-Kutta?
if(stepCount < stopAStep)
{
if(axesMoving)
timeStep = move->stepDistances[axesMoving]/velocity;
else
timeStep = move->extruderStepDistances[extrudersMoving]/velocity;
velocity += acceleration*timeStep;
if(noTest)
platform->SetInterrupt((long)(1.0e6*timeStep));
}
if(stepCount >= startDStep)
{
if(axesMoving)
timeStep = move->stepDistances[axesMoving]/velocity;
else
timeStep = move->extruderStepDistances[extrudersMoving]/velocity;
velocity -= acceleration*timeStep;
if(noTest)
platform->SetInterrupt((long)(1.0e6*timeStep));
}
stepCount++;
active = stepCount < totalSteps;
if(!active && noTest)
platform->SetInterrupt(STANDBY_INTERRUPT_RATE);
}
//***************************************************************************************************
LookAhead::LookAhead(Move* m, Platform* p, LookAhead* n)
{
move = m;
platform = p;
next = n;
}
void LookAhead::Init(float m[], float uu, float vv)
{
u = uu;
v = vv;
processed = true; // Fixme
for(char i = 0; i <= DRIVES; i++)
movement[i] = m[i];
}
// This returns the cosine of the angle between
// the movement starting at start, and the movement
// starting at the end of that. Note that it
// includes Z movements, though Z values will almost always
// not change.
float LookAhead::Cosine(LookAhead* start)
{
LookAhead* n1 = start->Next();
LookAhead* n2 = n1->Next();
float sum = 0.0;
float a2 = 0.0;
float b2 = 0.0;
float m1;
float m2;
for(char i = 0; i < AXES; i++)
{
m1 = n1->movement[i] - start->movement[i];
m2 = n2->movement[i] - n1->movement[i];
a2 += m1*m1;
b2 += m2*m2;
sum += m1*m2;
}
sum = sum/( (float)sqrt(a2) * (float)sqrt(b2) );
return sum;
}