
Refactored temperatyure sensor code Refactored fan control code Support invisible axes (M584 P parameter) Supprt user-defined virtual heaters Support heater names Support proportional thermostatic fan control Fix G10 retraction command Removed delta probe code
1011 lines
29 KiB
C++
1011 lines
29 KiB
C++
/*
|
|
* Move.cpp
|
|
*
|
|
* Created on: 7 Dec 2014
|
|
* Author: David
|
|
*/
|
|
|
|
#include "Move.h"
|
|
#include "Platform.h"
|
|
#include "RepRap.h"
|
|
|
|
Move::Move() : currentDda(NULL), scheduledMoves(0), completedMoves(0)
|
|
{
|
|
active = false;
|
|
|
|
kinematics = Kinematics::Create(KinematicsType::cartesian); // default to Cartesian
|
|
|
|
// Build the DDA ring
|
|
DDA *dda = new DDA(NULL);
|
|
ddaRingGetPointer = ddaRingAddPointer = dda;
|
|
for (size_t i = 1; i < DdaRingLength; i++)
|
|
{
|
|
DDA *oldDda = dda;
|
|
dda = new DDA(dda);
|
|
oldDda->SetPrevious(dda);
|
|
}
|
|
ddaRingAddPointer->SetNext(dda);
|
|
dda->SetPrevious(ddaRingAddPointer);
|
|
}
|
|
|
|
void Move::Init()
|
|
{
|
|
// Empty the ring
|
|
ddaRingGetPointer = ddaRingCheckPointer = ddaRingAddPointer;
|
|
DDA *dda = ddaRingAddPointer;
|
|
do
|
|
{
|
|
dda->Init();
|
|
dda = dda->GetNext();
|
|
} while (dda != ddaRingAddPointer);
|
|
|
|
currentDda = nullptr;
|
|
stepErrors = 0;
|
|
numLookaheadUnderruns = numPrepareUnderruns = 0;
|
|
|
|
// Clear the transforms
|
|
SetIdentityTransform();
|
|
tanXY = tanYZ = tanXZ = 0.0;
|
|
|
|
// Put the origin on the lookahead ring with default velocity in the previous position to the first one that will be used.
|
|
// Do this by calling SetLiveCoordinates and SetPositions, so that the motor coordinates will be correct too even on a delta.
|
|
float move[DRIVES];
|
|
for (size_t i = 0; i < DRIVES; i++)
|
|
{
|
|
move[i] = 0.0;
|
|
liveEndPoints[i] = 0; // not actually right for a delta, but better than printing random values in response to M114
|
|
reprap.GetPlatform().SetDirection(i, FORWARDS); // DC: I don't see any reason why we do this
|
|
}
|
|
SetLiveCoordinates(move);
|
|
SetPositions(move);
|
|
|
|
usingMesh = false;
|
|
useTaper = false;
|
|
|
|
longWait = reprap.GetPlatform().Time();
|
|
idleTimeout = DEFAULT_IDLE_TIMEOUT;
|
|
iState = IdleState::idle;
|
|
idleCount = 0;
|
|
|
|
simulationMode = 0;
|
|
simulationTime = 0.0;
|
|
longestGcodeWaitInterval = 0;
|
|
waitingForMove = false;
|
|
|
|
active = true;
|
|
}
|
|
|
|
void Move::Exit()
|
|
{
|
|
reprap.GetPlatform().Message(HOST_MESSAGE, "Move class exited.\n");
|
|
active = false;
|
|
}
|
|
|
|
void Move::Spin()
|
|
{
|
|
if (!active)
|
|
{
|
|
return;
|
|
}
|
|
|
|
if (idleCount < 1000)
|
|
{
|
|
++idleCount;
|
|
}
|
|
|
|
// Check for DDA errors to print if Move debug is enabled
|
|
while (ddaRingCheckPointer->GetState() == DDA::completed)
|
|
{
|
|
if (ddaRingCheckPointer->HasStepError())
|
|
{
|
|
if (reprap.Debug(moduleMove))
|
|
{
|
|
ddaRingCheckPointer->DebugPrint();
|
|
}
|
|
++stepErrors;
|
|
reprap.GetPlatform().LogError(ErrorCode::BadMove);
|
|
}
|
|
if (ddaRingCheckPointer->Free())
|
|
{
|
|
++numLookaheadUnderruns;
|
|
}
|
|
ddaRingCheckPointer = ddaRingCheckPointer->GetNext();
|
|
}
|
|
|
|
// See if we can add another move to the ring
|
|
if (
|
|
#if SUPPORT_ROLAND
|
|
!reprap.GetRoland()->Active() &&
|
|
#endif
|
|
ddaRingAddPointer->GetState() == DDA::empty
|
|
&& ddaRingAddPointer->GetNext()->GetState() != DDA::provisional // function Prepare needs to access the endpoints in the previous move, so don't change them
|
|
)
|
|
{
|
|
// In order to react faster to speed and extrusion rate changes, only add more moves if the total duration of
|
|
// all un-frozen moves is less than 2 seconds, or the total duration of all but the first un-frozen move is
|
|
// less than 0.5 seconds.
|
|
const DDA *dda = ddaRingAddPointer;
|
|
float unPreparedTime = 0.0;
|
|
float prevMoveTime = 0.0;
|
|
for(;;)
|
|
{
|
|
dda = dda->GetPrevious();
|
|
if (dda->GetState() != DDA::provisional)
|
|
{
|
|
break;
|
|
}
|
|
unPreparedTime += prevMoveTime;
|
|
prevMoveTime = dda->CalcTime();
|
|
}
|
|
|
|
if (unPreparedTime < 0.5 || unPreparedTime + prevMoveTime < 2.0)
|
|
{
|
|
// If there's a G Code move available, add it to the DDA ring for processing.
|
|
GCodes::RawMove nextMove;
|
|
if (reprap.GetGCodes().ReadMove(nextMove))
|
|
{
|
|
if (waitingForMove)
|
|
{
|
|
waitingForMove = false;
|
|
const uint32_t timeWaiting = millis() - gcodeWaitStartTime;
|
|
if (timeWaiting > longestGcodeWaitInterval)
|
|
{
|
|
longestGcodeWaitInterval = timeWaiting;
|
|
}
|
|
}
|
|
// We have a new move
|
|
if (simulationMode < 2) // in simulation mode 2 and higher, we don't process incoming moves beyond this point
|
|
{
|
|
const bool doMotorMapping = (nextMove.moveType == 0) || (nextMove.moveType == 1 && !IsDeltaMode());
|
|
if (doMotorMapping)
|
|
{
|
|
AxisAndBedTransform(nextMove.coords, nextMove.xAxes, nextMove.moveType == 0);
|
|
}
|
|
if (ddaRingAddPointer->Init(nextMove, doMotorMapping))
|
|
{
|
|
ddaRingAddPointer = ddaRingAddPointer->GetNext();
|
|
idleCount = 0;
|
|
scheduledMoves++;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// We wanted another move, but none was available
|
|
if (currentDda != nullptr && !waitingForMove)
|
|
{
|
|
gcodeWaitStartTime = millis();
|
|
waitingForMove = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// See whether we need to kick off a move
|
|
if (currentDda == nullptr)
|
|
{
|
|
// No DDA is executing, so start executing a new one if possible
|
|
if (idleCount > 10) // better to have a few moves in the queue so that we can do lookahead
|
|
{
|
|
DDA *dda = ddaRingGetPointer;
|
|
if (dda->GetState() == DDA::provisional)
|
|
{
|
|
dda->Prepare();
|
|
}
|
|
if (dda->GetState() == DDA::frozen)
|
|
{
|
|
if (simulationMode != 0)
|
|
{
|
|
currentDda = dda; // pretend we are executing this move
|
|
}
|
|
else
|
|
{
|
|
Platform::DisableStepInterrupt(); // should be disabled already because we weren't executing a move, but make sure
|
|
if (StartNextMove(Platform::GetInterruptClocks())) // start the next move
|
|
{
|
|
Interrupt();
|
|
}
|
|
}
|
|
iState = IdleState::busy;
|
|
}
|
|
else if (!simulationMode != 0 && iState == IdleState::busy && !reprap.GetGCodes().IsPaused() && idleTimeout > 0.0)
|
|
{
|
|
lastMoveTime = reprap.GetPlatform().Time(); // record when we first noticed that the machine was idle
|
|
iState = IdleState::timing;
|
|
}
|
|
else if (!simulationMode != 0 && iState == IdleState::timing && reprap.GetPlatform().Time() - lastMoveTime >= idleTimeout)
|
|
{
|
|
reprap.GetPlatform().SetDriversIdle(); // put all drives in idle hold
|
|
iState = IdleState::idle;
|
|
}
|
|
}
|
|
}
|
|
|
|
DDA *cdda = currentDda; // currentDda is volatile, so copy it
|
|
if (cdda != nullptr)
|
|
{
|
|
// See whether we need to prepare any moves
|
|
int32_t preparedTime = 0;
|
|
uint32_t preparedCount = 0;
|
|
DDA::DDAState st;
|
|
while ((st = cdda->GetState()) == DDA::completed || st == DDA::executing || st == DDA::frozen)
|
|
{
|
|
preparedTime += cdda->GetTimeLeft();
|
|
++preparedCount;
|
|
cdda = cdda->GetNext();
|
|
if (cdda == ddaRingAddPointer)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If the number of prepared moves will execute in less than the minimum time, prepare another move
|
|
while (st == DDA::provisional
|
|
&& preparedTime < (int32_t)(DDA::stepClockRate/8) // prepare moves one eighth of a second ahead of when they will be needed
|
|
&& preparedCount < DdaRingLength/2 // but don't prepare more than half the ring
|
|
)
|
|
{
|
|
cdda->Prepare();
|
|
preparedTime += cdda->GetTimeLeft();
|
|
++preparedCount;
|
|
cdda = cdda->GetNext();
|
|
st = cdda->GetState();
|
|
}
|
|
|
|
// If we are simulating and the move pipeline is reasonably full, simulate completion of the current move
|
|
if (simulationMode != 0 && idleCount >= 10)
|
|
{
|
|
// Simulate completion of the current move
|
|
//DEBUG
|
|
//currentDda->DebugPrint();
|
|
simulationTime += currentDda->CalcTime();
|
|
CurrentMoveCompleted();
|
|
}
|
|
}
|
|
|
|
reprap.GetPlatform().ClassReport(longWait);
|
|
}
|
|
|
|
// Change the kinematics to the specified type if it isn't already
|
|
// If it is already correct leave its parameters alone.
|
|
// This violates our rule on no dynamic memory allocation after the initialisation phase,
|
|
// however this function is normally called only when M665, M667 and M669 commands in config.g are processed.
|
|
bool Move::SetKinematics(KinematicsType k)
|
|
{
|
|
if (kinematics->GetKinematicsType() != k)
|
|
{
|
|
Kinematics *nk = Kinematics::Create(k);
|
|
if (nk == nullptr)
|
|
{
|
|
return false;
|
|
}
|
|
delete kinematics;
|
|
kinematics = nk;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Return true if the specified point is accessible to the Z probe
|
|
bool Move::IsAccessibleProbePoint(float x, float y) const
|
|
{
|
|
const ZProbeParameters& params = reprap.GetPlatform().GetCurrentZProbeParameters();
|
|
return kinematics->IsReachable(x - params.xOffset, y - params.yOffset);
|
|
}
|
|
|
|
// Pause the print as soon as we can.
|
|
// Returns the file position of the first queue move we are going to skip, or noFilePosition we we are not skipping any moves.
|
|
// We update 'positions' to the positions and feed rate expected for the next move, and the amount of extrusion in the moves we skipped.
|
|
// If we are not skipping any moves then the feed rate is left alone, therefore the caller should set this up first.
|
|
FilePosition Move::PausePrint(float positions[DRIVES], float& pausedFeedRate, uint32_t xAxes)
|
|
{
|
|
// Find a move we can pause after.
|
|
// Ideally, we would adjust a move if necessary and possible so that we can pause after it, but for now we don't do that.
|
|
// There are a few possibilities:
|
|
// 1. There are no moves in the queue.
|
|
// 2. There is a currently-executing move, and possibly some more in the queue.
|
|
// 3. There are moves in the queue, but we haven't started executing them yet. Unlikely, but possible.
|
|
|
|
// First, see if there is a currently-executing move, and if so, whether we can safely pause at the end of it
|
|
const DDA *savedDdaRingAddPointer = ddaRingAddPointer;
|
|
cpu_irq_disable();
|
|
DDA *dda = currentDda;
|
|
FilePosition fPos = noFilePosition;
|
|
if (dda != nullptr)
|
|
{
|
|
// A move is being executed. See if we can safely pause at the end of it.
|
|
if (dda->CanPauseAfter())
|
|
{
|
|
fPos = dda->GetFilePosition();
|
|
ddaRingAddPointer = dda->GetNext();
|
|
}
|
|
else
|
|
{
|
|
// We can't safely pause after the currently-executing move because its end speed is too high so we may miss steps.
|
|
// Search for the next move that we can safely stop after.
|
|
dda = ddaRingGetPointer;
|
|
while (dda != ddaRingAddPointer)
|
|
{
|
|
if (dda->CanPauseAfter())
|
|
{
|
|
fPos = dda->GetFilePosition();
|
|
ddaRingAddPointer = dda->GetNext();
|
|
if (ddaRingAddPointer->GetState() == DDA::frozen)
|
|
{
|
|
// Change the state so that the ISR won't start executing this move
|
|
(void)ddaRingAddPointer->Free();
|
|
}
|
|
break;
|
|
}
|
|
dda = dda->GetNext();
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// No move being executed
|
|
ddaRingAddPointer = ddaRingGetPointer;
|
|
}
|
|
|
|
cpu_irq_enable();
|
|
|
|
if (ddaRingAddPointer != savedDdaRingAddPointer)
|
|
{
|
|
const size_t numAxes = reprap.GetGCodes().GetTotalAxes();
|
|
|
|
// We are going to skip some moves. dda points to the last move we are going to print.
|
|
for (size_t axis = 0; axis < numAxes; ++axis)
|
|
{
|
|
positions[axis] = dda->GetEndCoordinate(axis, false);
|
|
}
|
|
for (size_t drive = numAxes; drive < DRIVES; ++drive)
|
|
{
|
|
positions[drive] = 0.0; // clear out extruder movement
|
|
}
|
|
pausedFeedRate = dda->GetRequestedSpeed();
|
|
|
|
// Free the DDAs for the moves we are going to skip, and work out how much extrusion they would have performed
|
|
dda = ddaRingAddPointer;
|
|
do
|
|
{
|
|
for (size_t drive = numAxes; drive < DRIVES; ++drive)
|
|
{
|
|
positions[drive] += dda->GetEndCoordinate(drive, true); // update the amount of extrusion we are going to skip
|
|
}
|
|
(void)dda->Free();
|
|
dda = dda->GetNext();
|
|
scheduledMoves--;
|
|
}
|
|
while (dda != savedDdaRingAddPointer);
|
|
}
|
|
else
|
|
{
|
|
GetCurrentUserPosition(positions, 0, xAxes); // gets positions and clears out extrusion values
|
|
}
|
|
|
|
return fPos;
|
|
}
|
|
|
|
uint32_t maxReps = 0;
|
|
|
|
#if 0
|
|
// For debugging
|
|
extern uint32_t sqSum1, sqSum2, sqCount, sqErrors, lastRes1, lastRes2;
|
|
extern uint64_t lastNum;
|
|
#endif
|
|
|
|
void Move::Diagnostics(MessageType mtype)
|
|
{
|
|
Platform& p = reprap.GetPlatform();
|
|
p.Message(mtype, "=== Move ===\n");
|
|
p.MessageF(mtype, "MaxReps: %u, StepErrors: %u, MaxWait: %ums, Underruns: %u, %u\n",
|
|
maxReps, stepErrors, longestGcodeWaitInterval, numLookaheadUnderruns, numPrepareUnderruns);
|
|
maxReps = 0;
|
|
numLookaheadUnderruns = numPrepareUnderruns = 0;
|
|
longestGcodeWaitInterval = 0;
|
|
|
|
reprap.GetPlatform().MessageF(mtype, "Scheduled moves: %u, completed moves: %u\n", scheduledMoves, completedMoves);
|
|
|
|
#if defined(__ALLIGATOR__)
|
|
// Motor Fault Diagnostic
|
|
reprap.GetPlatform().MessageF(mtype, "Motor Fault status: %s\n", digitalRead(MotorFaultDetectPin) ? "none" : "FAULT detected!" );
|
|
#endif
|
|
|
|
// Show the current probe position heights and type of bed compensation in use
|
|
p.Message(mtype, "Bed compensation in use: ");
|
|
if (usingMesh)
|
|
{
|
|
p.Message(mtype, "mesh\n");
|
|
}
|
|
else if (probePoints.GetNumBedCompensationPoints() != 0)
|
|
{
|
|
p.MessageF(mtype, "%d point\n", probePoints.GetNumBedCompensationPoints());
|
|
}
|
|
else
|
|
{
|
|
p.Message(mtype, "none\n");
|
|
}
|
|
|
|
p.Message(mtype, "Bed probe heights:");
|
|
// To keep the response short so that it doesn't get truncated when sending it via HTTP, we only show the first 5 bed probe points
|
|
for (size_t i = 0; i < 5; ++i)
|
|
{
|
|
p.MessageF(mtype, " %.3f", probePoints.GetZHeight(i));
|
|
}
|
|
p.Message(mtype, "\n");
|
|
|
|
#if DDA_LOG_PROBE_CHANGES
|
|
// Temporary code to print Z probe trigger positions
|
|
p.Message(mtype, "Probe change coordinates:");
|
|
char ch = ' ';
|
|
for (size_t i = 0; i < DDA::numLoggedProbePositions; ++i)
|
|
{
|
|
float xyzPos[XYZ_AXES];
|
|
MotorStepsToCartesian(DDA::loggedProbePositions + (XYZ_AXES * i), XYZ_AXES, XYZ_AXES, xyzPos);
|
|
p.MessageF(mtype, "%c%.2f,%.2f", ch, xyzPos[X_AXIS], xyzPos[Y_AXIS]);
|
|
ch = ',';
|
|
}
|
|
p.Message(mtype, "\n");
|
|
#endif
|
|
|
|
#if 0
|
|
// For debugging
|
|
if (sqCount != 0)
|
|
{
|
|
p.AppendMessage(GENERIC_MESSAGE, "Average sqrt times %.2f, %.2f, count %u, errors %u, last %" PRIu64 " %u %u\n",
|
|
(float)sqSum1/sqCount, (float)sqSum2/sqCount, sqCount, sqErrors, lastNum, lastRes1, lastRes2);
|
|
sqSum1 = sqSum2 = sqCount = sqErrors = 0;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// These are the actual numbers we want in the positions, so don't transform them.
|
|
void Move::SetPositions(const float move[DRIVES])
|
|
{
|
|
if (DDARingEmpty())
|
|
{
|
|
ddaRingAddPointer->GetPrevious()->SetPositions(move, DRIVES);
|
|
}
|
|
else
|
|
{
|
|
reprap.GetPlatform().Message(GENERIC_MESSAGE, "SetPositions called when DDA ring not empty\n");
|
|
}
|
|
}
|
|
|
|
void Move::EndPointToMachine(const float coords[], int32_t ep[], size_t numDrives) const
|
|
{
|
|
if (CartesianToMotorSteps(coords, ep))
|
|
{
|
|
const size_t numAxes = reprap.GetGCodes().GetTotalAxes();
|
|
for (size_t drive = numAxes; drive < numDrives; ++drive)
|
|
{
|
|
ep[drive] = MotorEndPointToMachine(drive, coords[drive]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Convert distance to steps for a particular drive
|
|
int32_t Move::MotorEndPointToMachine(size_t drive, float coord)
|
|
{
|
|
return (int32_t)roundf(coord * reprap.GetPlatform().DriveStepsPerUnit(drive));
|
|
}
|
|
|
|
// Convert motor coordinates to machine coordinates. Used after homing and after individual motor moves.
|
|
// This is computationally expensive on a delta or SCARA machine, so only call it when necessary, and never from the step ISR.
|
|
void Move::MotorStepsToCartesian(const int32_t motorPos[], size_t numVisibleAxes, size_t numTotalAxes, float machinePos[]) const
|
|
{
|
|
kinematics->MotorStepsToCartesian(motorPos, reprap.GetPlatform().GetDriveStepsPerUnit(), numVisibleAxes, numTotalAxes, machinePos);
|
|
}
|
|
|
|
// Convert Cartesian coordinates to motor steps, axes only, returning true if successful.
|
|
// Used to perform movement and G92 commands.
|
|
bool Move::CartesianToMotorSteps(const float machinePos[MaxAxes], int32_t motorPos[MaxAxes]) const
|
|
{
|
|
const bool b = kinematics->CartesianToMotorSteps(machinePos, reprap.GetPlatform().GetDriveStepsPerUnit(), reprap.GetGCodes().GetVisibleAxes(), reprap.GetGCodes().GetTotalAxes(), motorPos);
|
|
if (reprap.Debug(moduleMove) && reprap.Debug(moduleDda))
|
|
{
|
|
if (b)
|
|
{
|
|
debugPrintf("Transformed %.2f %.2f %.2f to %d %d %d\n", machinePos[0], machinePos[1], machinePos[2], motorPos[0], motorPos[1], motorPos[2]);
|
|
}
|
|
else
|
|
{
|
|
debugPrintf("Unable to transform %.2f %.2f %.2f\n", machinePos[0], machinePos[1], machinePos[2]);
|
|
}
|
|
}
|
|
return b;
|
|
}
|
|
|
|
void Move::AxisAndBedTransform(float xyzPoint[MaxAxes], uint32_t xAxes, bool useBedCompensation) const
|
|
{
|
|
AxisTransform(xyzPoint);
|
|
if (useBedCompensation)
|
|
{
|
|
BedTransform(xyzPoint, xAxes);
|
|
}
|
|
}
|
|
|
|
void Move::InverseAxisAndBedTransform(float xyzPoint[MaxAxes], uint32_t xAxes) const
|
|
{
|
|
InverseBedTransform(xyzPoint, xAxes);
|
|
InverseAxisTransform(xyzPoint);
|
|
}
|
|
|
|
// Do the Axis transform BEFORE the bed transform
|
|
void Move::AxisTransform(float xyzPoint[MaxAxes]) const
|
|
{
|
|
//TODO should we transform U axis instead of/as well as X if we are in dual carriage mode?
|
|
xyzPoint[X_AXIS] += tanXY*xyzPoint[Y_AXIS] + tanXZ*xyzPoint[Z_AXIS];
|
|
xyzPoint[Y_AXIS] += tanYZ*xyzPoint[Z_AXIS];
|
|
}
|
|
|
|
// Invert the Axis transform AFTER the bed transform
|
|
void Move::InverseAxisTransform(float xyzPoint[MaxAxes]) const
|
|
{
|
|
//TODO should we transform U axis instead of/as well as X if we are in dual carriage mode?
|
|
xyzPoint[Y_AXIS] -= tanYZ*xyzPoint[Z_AXIS];
|
|
xyzPoint[X_AXIS] -= (tanXY*xyzPoint[Y_AXIS] + tanXZ*xyzPoint[Z_AXIS]);
|
|
}
|
|
|
|
// Do the bed transform AFTER the axis transform
|
|
void Move::BedTransform(float xyzPoint[MaxAxes], uint32_t xAxes) const
|
|
{
|
|
if (!useTaper || xyzPoint[Z_AXIS] < taperHeight)
|
|
{
|
|
float zCorrection = 0.0;
|
|
const size_t numAxes = reprap.GetGCodes().GetVisibleAxes();
|
|
unsigned int numXAxes = 0;
|
|
|
|
// Transform the Z coordinate based on the average correction for each axis used as an X axis.
|
|
// We are assuming that the tool Y offsets are small enough to be ignored.
|
|
for (uint32_t axis = 0; axis < numAxes; ++axis)
|
|
{
|
|
if ((xAxes & (1u << axis)) != 0)
|
|
{
|
|
const float xCoord = xyzPoint[axis];
|
|
if (usingMesh)
|
|
{
|
|
zCorrection += grid.GetInterpolatedHeightError(xCoord, xyzPoint[Y_AXIS]);
|
|
}
|
|
else
|
|
{
|
|
zCorrection += probePoints.GetInterpolatedHeightError(xCoord, xyzPoint[Y_AXIS]);
|
|
}
|
|
++numXAxes;
|
|
}
|
|
}
|
|
|
|
if (numXAxes > 1)
|
|
{
|
|
zCorrection /= numXAxes; // take an average
|
|
}
|
|
|
|
xyzPoint[Z_AXIS] += (useTaper) ? (taperHeight - xyzPoint[Z_AXIS]) * recipTaperHeight * zCorrection : zCorrection;
|
|
}
|
|
}
|
|
|
|
// Invert the bed transform BEFORE the axis transform
|
|
void Move::InverseBedTransform(float xyzPoint[MaxAxes], uint32_t xAxes) const
|
|
{
|
|
float zCorrection = 0.0;
|
|
const size_t numAxes = reprap.GetGCodes().GetVisibleAxes();
|
|
unsigned int numXAxes = 0;
|
|
|
|
// Transform the Z coordinate based on the average correction for each axis used as an X axis.
|
|
// We are assuming that the tool Y offsets are small enough to be ignored.
|
|
for (uint32_t axis = 0; axis < numAxes; ++axis)
|
|
{
|
|
if ((xAxes & (1u << axis)) != 0)
|
|
{
|
|
const float xCoord = xyzPoint[axis];
|
|
if (usingMesh)
|
|
{
|
|
zCorrection += grid.GetInterpolatedHeightError(xCoord, xyzPoint[Y_AXIS]);
|
|
}
|
|
else
|
|
{
|
|
zCorrection += probePoints.GetInterpolatedHeightError(xCoord, xyzPoint[Y_AXIS]);
|
|
|
|
}
|
|
++numXAxes;
|
|
}
|
|
}
|
|
|
|
if (numXAxes > 1)
|
|
{
|
|
zCorrection /= numXAxes; // take an average
|
|
}
|
|
|
|
if (!useTaper || zCorrection >= taperHeight) // need check on zCorrection to avoid possible divide by zero
|
|
{
|
|
xyzPoint[Z_AXIS] -= zCorrection;
|
|
}
|
|
else
|
|
{
|
|
const float zreq = (xyzPoint[Z_AXIS] - zCorrection)/(1.0 - (zCorrection * recipTaperHeight));
|
|
if (zreq < taperHeight)
|
|
{
|
|
xyzPoint[Z_AXIS] = zreq;
|
|
}
|
|
}
|
|
}
|
|
|
|
void Move::SetIdentityTransform()
|
|
{
|
|
probePoints.SetIdentity();
|
|
grid.ClearGridHeights();
|
|
grid.UseHeightMap(false);
|
|
usingMesh = false;
|
|
}
|
|
|
|
void Move::SetTaperHeight(float h)
|
|
{
|
|
useTaper = (h > 1.0);
|
|
if (useTaper)
|
|
{
|
|
taperHeight = h;
|
|
recipTaperHeight = 1.0/h;
|
|
}
|
|
}
|
|
|
|
// Enable mesh bed compensation
|
|
bool Move::UseMesh(bool b)
|
|
{
|
|
usingMesh = grid.UseHeightMap(b);
|
|
return usingMesh;
|
|
}
|
|
|
|
float Move::AxisCompensation(int8_t axis) const
|
|
{
|
|
switch(axis)
|
|
{
|
|
case X_AXIS:
|
|
return tanXY;
|
|
|
|
case Y_AXIS:
|
|
return tanYZ;
|
|
|
|
case Z_AXIS:
|
|
return tanXZ;
|
|
|
|
default:
|
|
reprap.GetPlatform().Message(GENERIC_MESSAGE, "Axis compensation requested for non-existent axis.\n");
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
void Move::SetAxisCompensation(int8_t axis, float tangent)
|
|
{
|
|
switch(axis)
|
|
{
|
|
case X_AXIS:
|
|
tanXY = tangent;
|
|
break;
|
|
case Y_AXIS:
|
|
tanYZ = tangent;
|
|
break;
|
|
case Z_AXIS:
|
|
tanXZ = tangent;
|
|
break;
|
|
default:
|
|
reprap.GetPlatform().Message(GENERIC_MESSAGE, "SetAxisCompensation: dud axis.\n");
|
|
}
|
|
}
|
|
|
|
// Calibrate or set the bed equation after probing.
|
|
// sParam is the value of the S parameter in the G30 command that provoked this call.
|
|
void Move::FinishedBedProbing(int sParam, StringRef& reply)
|
|
{
|
|
const size_t numPoints = probePoints.NumberOfProbePoints();
|
|
|
|
if (sParam < 0)
|
|
{
|
|
// A negative sParam just prints the probe heights
|
|
probePoints.ReportProbeHeights(numPoints, reply);
|
|
}
|
|
else if (numPoints < (size_t)sParam)
|
|
{
|
|
reprap.GetPlatform().MessageF(GENERIC_MESSAGE, "Bed calibration error: %d factor calibration requested but only %d points provided\n", sParam, numPoints);
|
|
}
|
|
else
|
|
{
|
|
if (reprap.Debug(moduleMove))
|
|
{
|
|
probePoints.DebugPrint(numPoints);
|
|
}
|
|
|
|
if (sParam == 0)
|
|
{
|
|
sParam = numPoints;
|
|
}
|
|
|
|
if (!probePoints.GoodProbePoints(numPoints))
|
|
{
|
|
reply.cat("Compensation or calibration cancelled due to probing errors");
|
|
}
|
|
else if (kinematics->SupportsAutoCalibration())
|
|
{
|
|
kinematics->DoAutoCalibration(sParam, probePoints, reply);
|
|
}
|
|
else
|
|
{
|
|
probePoints.SetProbedBedEquation(sParam, reply);
|
|
}
|
|
}
|
|
|
|
// Clear out the Z heights so that we don't re-use old points.
|
|
// This allows us to use different numbers of probe point on different occasions.
|
|
probePoints.ClearProbeHeights();
|
|
}
|
|
|
|
// Perform motor endpoint adjustment
|
|
void Move::AdjustMotorPositions(const float_t adjustment[], size_t numMotors)
|
|
{
|
|
DDA * const lastQueuedMove = ddaRingAddPointer->GetPrevious();
|
|
const int32_t * const endCoordinates = lastQueuedMove->DriveCoordinates();
|
|
const float * const driveStepsPerUnit = reprap.GetPlatform().GetDriveStepsPerUnit();
|
|
|
|
for (size_t drive = 0; drive < DELTA_AXES; ++drive)
|
|
{
|
|
const int32_t ep = endCoordinates[drive] + (int32_t)(adjustment[drive] * driveStepsPerUnit[drive]);
|
|
lastQueuedMove->SetDriveCoordinate(ep, drive);
|
|
liveEndPoints[drive] = ep;
|
|
}
|
|
|
|
liveCoordinatesValid = false; // force the live XYZ position to be recalculated
|
|
}
|
|
|
|
// This is called from the step ISR when the current move has been completed
|
|
void Move::CurrentMoveCompleted()
|
|
{
|
|
// Save the current motor coordinates, and the machine Cartesian coordinates if known
|
|
liveCoordinatesValid = currentDda->FetchEndPosition(const_cast<int32_t*>(liveEndPoints), const_cast<float *>(liveCoordinates));
|
|
|
|
currentDda->Complete();
|
|
currentDda = nullptr;
|
|
ddaRingGetPointer = ddaRingGetPointer->GetNext();
|
|
completedMoves++;
|
|
}
|
|
|
|
// Try to start another move. Must be called with interrupts disabled, to avoid a race condition.
|
|
bool Move::TryStartNextMove(uint32_t startTime)
|
|
{
|
|
const DDA::DDAState st = ddaRingGetPointer->GetState();
|
|
if (st == DDA::frozen)
|
|
{
|
|
return StartNextMove(startTime);
|
|
}
|
|
else
|
|
{
|
|
if (st == DDA::provisional)
|
|
{
|
|
// There are more moves available, but they are not prepared yet. Signal an underrun.
|
|
++numPrepareUnderruns;
|
|
}
|
|
reprap.GetPlatform().ExtrudeOff(); // turn off ancilliary PWM
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// This is called from the step ISR. Any variables it modifies that are also read by code outside the ISR must be declared 'volatile'.
|
|
void Move::HitLowStop(size_t axis, DDA* hitDDA)
|
|
{
|
|
if (axis < reprap.GetGCodes().GetTotalAxes() && !IsDeltaMode()) // should always be true
|
|
{
|
|
JustHomed(axis, reprap.GetPlatform().AxisMinimum(axis), hitDDA);
|
|
}
|
|
}
|
|
|
|
// This is called from the step ISR. Any variables it modifies that are also read by code outside the ISR must be declared 'volatile'.
|
|
void Move::HitHighStop(size_t axis, DDA* hitDDA)
|
|
{
|
|
if (axis < reprap.GetGCodes().GetTotalAxes()) // should always be true
|
|
{
|
|
const float hitPoint = (IsDeltaMode())
|
|
? ((LinearDeltaKinematics*)kinematics)->GetHomedCarriageHeight(axis) // this is a delta printer, so the motor is at the homed carriage height for this drive
|
|
: reprap.GetPlatform().AxisMaximum(axis); // this is a Cartesian printer, so we're at the maximum for this axis
|
|
JustHomed(axis, hitPoint, hitDDA);
|
|
}
|
|
}
|
|
|
|
// This is called from the step ISR. Any variables it modifies that are also read by code outside the ISR must be declared 'volatile'.
|
|
void Move::JustHomed(size_t axisHomed, float hitPoint, DDA* hitDDA)
|
|
{
|
|
if (IsCoreXYAxis(axisHomed))
|
|
{
|
|
float tempCoordinates[XYZ_AXES];
|
|
for (size_t axis = 0; axis < XYZ_AXES; ++axis)
|
|
{
|
|
tempCoordinates[axis] = hitDDA->GetEndCoordinate(axis, false);
|
|
}
|
|
tempCoordinates[axisHomed] = hitPoint;
|
|
hitDDA->SetPositions(tempCoordinates, XYZ_AXES);
|
|
}
|
|
else
|
|
{
|
|
hitDDA->SetDriveCoordinate(MotorEndPointToMachine(axisHomed, hitPoint), axisHomed);
|
|
}
|
|
reprap.GetGCodes().SetAxisIsHomed(axisHomed);
|
|
|
|
}
|
|
|
|
// This is called from the step ISR. Any variables it modifies that are also read by code outside the ISR should be declared 'volatile'.
|
|
// The move has already been aborted when this is called, so the endpoints in the DDA are the current motor positions.
|
|
void Move::ZProbeTriggered(DDA* hitDDA)
|
|
{
|
|
reprap.GetGCodes().MoveStoppedByZProbe();
|
|
}
|
|
|
|
// Return the untransformed machine coordinates
|
|
void Move::GetCurrentMachinePosition(float m[DRIVES], bool disableMotorMapping) const
|
|
{
|
|
DDA * const lastQueuedMove = ddaRingAddPointer->GetPrevious();
|
|
const size_t numAxes = reprap.GetGCodes().GetVisibleAxes();
|
|
for (size_t i = 0; i < DRIVES; i++)
|
|
{
|
|
if (i < numAxes)
|
|
{
|
|
m[i] = lastQueuedMove->GetEndCoordinate(i, disableMotorMapping);
|
|
}
|
|
else
|
|
{
|
|
m[i] = 0.0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*static*/ float Move::MotorEndpointToPosition(int32_t endpoint, size_t drive)
|
|
{
|
|
return ((float)(endpoint))/reprap.GetPlatform().DriveStepsPerUnit(drive);
|
|
}
|
|
|
|
// Is filament being extruded?
|
|
bool Move::IsExtruding() const
|
|
{
|
|
cpu_irq_disable();
|
|
const bool rslt = currentDda != nullptr && currentDda->IsPrintingMove();
|
|
cpu_irq_enable();
|
|
return rslt;
|
|
}
|
|
|
|
// Return the transformed machine coordinates
|
|
void Move::GetCurrentUserPosition(float m[DRIVES], uint8_t moveType, uint32_t xAxes) const
|
|
{
|
|
GetCurrentMachinePosition(m, moveType == 2 || (moveType == 1 && IsDeltaMode()));
|
|
if (moveType == 0)
|
|
{
|
|
InverseAxisAndBedTransform(m, xAxes);
|
|
}
|
|
}
|
|
|
|
// Return the current live XYZ and extruder coordinates
|
|
// Interrupts are assumed enabled on entry
|
|
void Move::LiveCoordinates(float m[DRIVES], uint32_t xAxes)
|
|
{
|
|
// The live coordinates and live endpoints are modified by the ISR, so be careful to get a self-consistent set of them
|
|
const size_t numVisibleAxes = reprap.GetGCodes().GetVisibleAxes(); // do this before we disable interrupts
|
|
cpu_irq_disable();
|
|
if (liveCoordinatesValid)
|
|
{
|
|
// All coordinates are valid, so copy them across
|
|
memcpy(m, const_cast<const float *>(liveCoordinates), sizeof(m[0]) * DRIVES);
|
|
cpu_irq_enable();
|
|
}
|
|
else
|
|
{
|
|
const size_t numTotalAxes = reprap.GetGCodes().GetTotalAxes(); // do this before we disable interrupts
|
|
// Only the extruder coordinates are valid, so we need to convert the motor endpoints to coordinates
|
|
memcpy(m + numTotalAxes, const_cast<const float *>(liveCoordinates + numTotalAxes), sizeof(m[0]) * (DRIVES - numTotalAxes));
|
|
int32_t tempEndPoints[MaxAxes];
|
|
memcpy(tempEndPoints, const_cast<const int32_t*>(liveEndPoints), sizeof(tempEndPoints));
|
|
cpu_irq_enable();
|
|
|
|
MotorStepsToCartesian(tempEndPoints, numVisibleAxes, numTotalAxes, m); // this is slow, so do it with interrupts enabled
|
|
|
|
// If the ISR has not updated the endpoints, store the live coordinates back so that we don't need to do it again
|
|
cpu_irq_disable();
|
|
if (memcmp(tempEndPoints, const_cast<const int32_t*>(liveEndPoints), sizeof(tempEndPoints)) == 0)
|
|
{
|
|
memcpy(const_cast<float *>(liveCoordinates), m, sizeof(m[0]) * numVisibleAxes);
|
|
liveCoordinatesValid = true;
|
|
}
|
|
cpu_irq_enable();
|
|
}
|
|
InverseAxisAndBedTransform(m, xAxes);
|
|
}
|
|
|
|
// These are the actual numbers that we want to be the coordinates, so don't transform them.
|
|
// The caller must make sure that no moves are in progress or pending when calling this
|
|
void Move::SetLiveCoordinates(const float coords[DRIVES])
|
|
{
|
|
for (size_t drive = 0; drive < DRIVES; drive++)
|
|
{
|
|
liveCoordinates[drive] = coords[drive];
|
|
}
|
|
liveCoordinatesValid = true;
|
|
EndPointToMachine(coords, const_cast<int32_t *>(liveEndPoints), reprap.GetGCodes().GetVisibleAxes());
|
|
}
|
|
|
|
void Move::ResetExtruderPositions()
|
|
{
|
|
cpu_irq_disable();
|
|
for (size_t eDrive = reprap.GetGCodes().GetTotalAxes(); eDrive < DRIVES; eDrive++)
|
|
{
|
|
liveCoordinates[eDrive] = 0.0;
|
|
}
|
|
cpu_irq_enable();
|
|
}
|
|
|
|
void Move::SetXYBedProbePoint(size_t index, float x, float y)
|
|
{
|
|
if (index >= MaxProbePoints)
|
|
{
|
|
reprap.GetPlatform().Message(GENERIC_MESSAGE, "Z probe point index out of range.\n");
|
|
}
|
|
else
|
|
{
|
|
probePoints.SetXYBedProbePoint(index, x, y);
|
|
}
|
|
}
|
|
|
|
void Move::SetZBedProbePoint(size_t index, float z, bool wasXyCorrected, bool wasError)
|
|
{
|
|
if (index >= MaxProbePoints)
|
|
{
|
|
reprap.GetPlatform().Message(GENERIC_MESSAGE, "Z probe point Z index out of range.\n");
|
|
}
|
|
else
|
|
{
|
|
probePoints.SetZBedProbePoint(index, z, wasXyCorrected, wasError);
|
|
}
|
|
}
|
|
|
|
// This returns the (X, Y) points to probe the bed at probe point count. When probing, it returns false.
|
|
// If called after probing has ended it returns true, and the Z coordinate probed is also returned.
|
|
// If 'wantNozzlePosition is true then we return the nozzle position when the point is probed, else we return the probe point itself
|
|
float Move::GetProbeCoordinates(int count, float& x, float& y, bool wantNozzlePosition) const
|
|
{
|
|
x = probePoints.GetXCoord(count);
|
|
y = probePoints.GetYCoord(count);
|
|
if (wantNozzlePosition)
|
|
{
|
|
const ZProbeParameters& rp = reprap.GetPlatform().GetCurrentZProbeParameters();
|
|
x -= rp.xOffset;
|
|
y -= rp.yOffset;
|
|
}
|
|
return probePoints.GetZHeight(count);
|
|
}
|
|
|
|
// Enter or leave simulation mode
|
|
void Move::Simulate(uint8_t simMode)
|
|
{
|
|
simulationMode = simMode;
|
|
if (simMode)
|
|
{
|
|
simulationTime = 0.0;
|
|
}
|
|
}
|
|
|
|
// For debugging
|
|
void Move::PrintCurrentDda() const
|
|
{
|
|
if (currentDda != nullptr)
|
|
{
|
|
currentDda->DebugPrint();
|
|
}
|
|
}
|
|
|
|
// Return true if the specified axis shares its motors with another. Safe to call for extruders as well as axes.
|
|
bool Move::IsCoreXYAxis(size_t axis) const
|
|
{
|
|
switch(kinematics->GetKinematicsType())
|
|
{
|
|
case KinematicsType::coreXY:
|
|
return axis == X_AXIS || axis == Y_AXIS;
|
|
case KinematicsType::coreXZ:
|
|
return axis == X_AXIS || axis == Z_AXIS;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// End
|