This repository has been archived on 2025-02-01. You can view files and clone it, but cannot push or open issues or pull requests.
reprapfirmware-dc42/GCodes.h
David Crocker a996c7ec4f Version 1.09i
Added support for Duet 0.8.5 with auto detection between 0.6 and 0.85
board types
Added P parameter to M115 command to set board type
Changed M115 output to report the board type that was configured or
auto-detected
Improved ISR and step pulse generation efficiency to allow higher
movement speeds, especially wheh using 0.9deg/step motors
Added XYZE parameters to M569 command to allow driver remapping
Added R parameter to M569 command to allow enable signal to be reversed
when using external drivers (thanks dnewman)
Removed M558 R parameter because boare type 0.7 can now be set via M115
instead
Moved Fan0 RPM sense pin to PA14 to avoid conflict with Duet 0.8.5 FAN1
pin
M408 poll command can now be handled concurrently with other commands
2015-09-02 19:33:28 +01:00

258 lines
13 KiB
C++

/****************************************************************************************************
RepRapFirmware - G Codes
This class interprets G Codes from one or more sources, and calls the functions in Move, Heat etc
that drive the machine to do what the G Codes command.
-----------------------------------------------------------------------------------------------------
Version 0.1
13 February 2013
Adrian Bowyer
RepRap Professional Ltd
http://reprappro.com
Licence: GPL
****************************************************************************************************/
#ifndef GCODES_H
#define GCODES_H
#include "GCodeBuffer.h"
const unsigned int StackSize = 5;
const char feedrateLetter = 'F'; // GCode feedrate
const char extrudeLetter = 'E'; // GCode extrude
// Type for specifying which endstops we want to check
typedef uint16_t EndstopChecks; // must be large enough to hold a bitmap of drive numbers or ZProbeActive
const EndstopChecks ZProbeActive = 1 << 15; // must be distinct from 1 << (any drive number)
const float minutesToSeconds = 60.0;
const float secondsToMinutes = 1.0/minutesToSeconds;
// Enumeration to list all the possible states that the Gcode processing machine may be in
enum class GCodeState
{
normal, // not doing anything and ready to process a new GCode
waitingForMoveToComplete, // doing a homing move, so we must wait for it to finish before processing another GCode
homing,
setBed1,
setBed2,
setBed3,
toolChange1,
toolChange2,
toolChange3,
pausing1,
pausing2,
resuming1,
resuming2,
resuming3
};
// Small class to stack the state when we execute a macro file
class GCodeMachineState
{
public:
GCodeState state;
GCodeBuffer *gb; // this may be null when executing config.g
float feedrate;
FileData fileState;
bool drivesRelative;
bool axesRelative;
bool doingFileMacro;
};
//****************************************************************************************************
// The GCode interpreter
class GCodes
{
public:
GCodes(Platform* p, Webserver* w);
void Spin(); // Called in a tight loop to make this class work
void Init(); // Set it up
void Exit(); // Shut it down
void Reset(); // Reset some parameter to defaults
bool ReadMove(float* m, EndstopChecks& ce, uint8_t& rMoveType, FilePosition& fPos); // Called by the Move class to get a movement set by the last G Code
void ClearMove();
void QueueFileToPrint(const char* fileName); // Open a file of G Codes to run
void DeleteFile(const char* fileName); // Does what it says
bool GetProbeCoordinates(int count, float& x, float& y, float& z) const; // Get pre-recorded probe coordinates
void GetCurrentCoordinates(StringRef& s) const; // Write where we are into a string
bool DoingFileMacro() const; // Or still busy processing a macro file?
float FractionOfFilePrinted() const; // Get fraction of file printed
void Diagnostics(); // Send helpful information out
bool HaveIncomingData() const; // Is there something that we have to do?
bool GetAxisIsHomed(uint8_t axis) const { return axisIsHomed[axis]; } // Is the axis at 0?
void SetAxisIsHomed(uint8_t axis) { axisIsHomed[axis] = true; } // Tell us that the axis is now homed
bool CoolingInverted() const; // Is the current fan value inverted?
void PauseSDPrint(); // Pause the current print from SD card
float GetSpeedFactor() const { return speedFactor * minutesToSeconds; } // Return the current speed factor
const float *GetExtrusionFactors() const { return extrusionFactors; } // Return the current extrusion factors
float GetRawExtruderPosition(size_t drive) const; // Get the actual extruder position, after adjusting the extrusion factor
bool HaveAux() const { return auxDetected; } // Any device on the AUX line?
bool IsPaused() const;
bool IsPausing() const;
bool IsResuming() const;
private:
void StartNextGCode(StringRef& reply); // Fetch a new GCode and process it
void DoFilePrint(GCodeBuffer* gb, StringRef& reply); // Get G Codes from a file and print them
bool AllMovesAreFinishedAndMoveBufferIsLoaded(); // Wait for move queue to exhaust and the current position is loaded
bool DoCannedCycleMove(EndstopChecks ce); // Do a move from an internally programmed canned cycle
bool DoFileMacro(const char* fileName, bool reportMissing = true); // Run a GCode macro in a file, optionally report error if not found
void FileMacroCyclesReturn(); // End a macro
bool ActOnCode(GCodeBuffer* gb, StringRef& reply); // Do a G, M or T Code
bool HandleGcode(GCodeBuffer* gb, StringRef& reply); // Do a G code
bool HandleMcode(GCodeBuffer* gb, StringRef& reply); // Do an M code
bool HandleTcode(GCodeBuffer* gb, StringRef& reply); // Do a T code
void CancelPrint(); // Cancel the current print
int SetUpMove(GCodeBuffer* gb, StringRef& reply); // Pass a move on to the Move module
bool DoDwell(GCodeBuffer *gb); // Wait for a bit
bool DoDwellTime(float dwell); // Really wait for a bit
bool DoSingleZProbeAtPoint(int probePointIndex, float heightAdjust); // Probe at a given point
bool DoSingleZProbe(bool reportOnly, float heightAdjust); // Probe where we are
int DoZProbe(float distance); // Do a Z probe cycle up to the maximum specified distance
bool SetSingleZProbeAtAPosition(GCodeBuffer *gb, StringRef& reply); // Probes at a given position - see the comment at the head of the function itself
void SetBedEquationWithProbe(int sParam, StringRef& reply); // Probes a series of points and sets the bed equation
bool SetPrintZProbe(GCodeBuffer *gb, StringRef& reply); // Either return the probe value, or set its threshold
void SetOrReportOffsets(StringRef& reply, GCodeBuffer *gb); // Deal with a G10
bool SetPositions(GCodeBuffer *gb); // Deal with a G92
bool LoadMoveBufferFromGCode(GCodeBuffer *gb, // Set up a move for the Move class
bool doingG92, bool applyLimits);
bool NoHome() const; // Are we homing and not finished?
void Push(); // Push feedrate etc on the stack
void Pop(); // Pop feedrate etc
void DisableDrives(); // Turn the motors off
void SetEthernetAddress(GCodeBuffer *gb, int mCode); // Does what it says
void SetMACAddress(GCodeBuffer *gb); // Deals with an M540
void HandleReply(bool error, const GCodeBuffer *gb, // If the GCode is from the serial interface, reply to it
const char* reply, char gMOrT, int code, bool resend);
bool OpenFileToWrite(const char* directory, // Start saving GCodes in a file
const char* fileName, GCodeBuffer *gb);
void WriteGCodeToFile(GCodeBuffer *gb); // Write this GCode into a file
bool SendConfigToLine(); // Deal with M503
void WriteHTMLToFile(char b, GCodeBuffer *gb); // Save an HTML file (usually to upload a new web interface)
bool OffsetAxes(GCodeBuffer *gb); // Set offsets - deprecated, use G10
void SetPidParameters(GCodeBuffer *gb, int heater, StringRef& reply); // Set the P/I/D parameters for a heater
void SetHeaterParameters(GCodeBuffer *gb, StringRef& reply); // Set the thermistor and ADC parameters for a heater
int8_t Heater(int8_t head) const; // Legacy G codes start heaters at 0, but we use 0 for the bed. This sorts that out.
void ManageTool(GCodeBuffer *gb, StringRef& reply); // Create a new tool definition
void SetToolHeaters(Tool *tool, float temperature); // Set all a tool's heaters to the temperature. For M104...
bool ToolHeatersAtSetTemperatures(const Tool *tool) const; // Wait for the heaters associated with the specified tool to reach their set temperatures
bool AllAxesAreHomed() const; // Return true if all axes are homed
void SetAllAxesNotHomed(); // Flag all axes as not homed
void SetPositions(float positionNow[DRIVES]); // Set the current position to be this
Platform* platform; // The RepRap machine
bool active; // Live and running?
bool isPaused; // true if the print has been paused
Webserver* webserver; // The webserver class
float dwellTime; // How long a pause for a dwell (seconds)?
bool dwellWaiting; // We are in a dwell
GCodeBuffer* webGCode; // The sources...
GCodeBuffer* fileGCode; // ...
GCodeBuffer* serialGCode; // ...
GCodeBuffer* auxGCode; // this one is for the LCD display on the async serial interface
GCodeBuffer* fileMacroGCode; // ...
GCodeBuffer *gbCurrent;
bool moveAvailable; // Have we seen a move G Code and set it up?
float moveBuffer[DRIVES+1]; // Move coordinates; last is feed rate
float savedMoveBuffer[DRIVES+1]; // The position and feedrate when we started the current simulation
float pausedMoveBuffer[DRIVES+1]; // Move coordinates; last is feed rate
EndstopChecks endStopsToCheck; // Which end stops we check them on the next move
uint8_t moveType; // 0 = normal move, 1 = homing move, 2 = direct motor move
GCodeState state; // The main state variable of the GCode state machine
bool drivesRelative;
bool axesRelative;
GCodeMachineState stack[StackSize]; // State that we save when calling macro files
unsigned int stackPointer; // Push and Pop stack pointer
static const char axisLetters[AXES]; // 'X', 'Y', 'Z'
float lastRawExtruderPosition[DRIVES - AXES]; // Extruder position of the last move fed into the Move class
float record[DRIVES+1]; // Temporary store for move positions
float moveToDo[DRIVES+1]; // Where to go set by G1 etc
bool activeDrive[DRIVES+1]; // Is this drive involved in a move?
bool offSetSet; // Are any axis offsets non-zero?
float distanceScale; // MM or inches
FileData fileBeingPrinted;
FileData fileToPrint;
FileStore* fileBeingWritten; // A file to write G Codes (or sometimes HTML) in
FileStore* configFile; // A file containing a macro
uint16_t toBeHomed; // Bitmap of axes still to be homed
bool doingFileMacro; // Are we executing a macro file?
int oldToolNumber, newToolNumber; // Tools being changed
const char* eofString; // What's at the end of an HTML file?
uint8_t eofStringCounter; // Check the...
uint8_t eofStringLength; // ... EoF string as we read.
int probeCount; // Counts multiple probe points
int8_t cannedCycleMoveCount; // Counts through internal (i.e. not macro) canned cycle moves
bool cannedCycleMoveQueued; // True if a canned cycle move has been set
bool zProbesSet; // True if all Z probing is done and we can set the bed equation
float longWait; // Timer for things that happen occasionally (seconds)
bool limitAxes; // Don't think outside the box.
bool axisIsHomed[AXES]; // These record which of the axes have been homed
bool coolingInverted;
float pausedFan0Value;
float pausedFan1Value;
float speedFactor; // speed factor, including the conversion from mm/min to mm/sec, normally 1/60
float speedFactorChange; // factor by which we changed the speed factor since the last move
float extrusionFactors[DRIVES - AXES]; // extrusion factors (normally 1.0)
float lastProbedZ; // the last height at which the Z probe stopped
bool auxDetected; // Have we processed at least one G-Code from an AUX device?
bool simulating;
float simulationTime;
FilePosition filePos; // The position we got up to in the file being printed
FilePosition moveFilePos; // Saved version of filePos for the next real move to be processed
};
//*****************************************************************************************************
inline bool GCodes::DoingFileMacro() const
{
return doingFileMacro;
}
inline bool GCodes::HaveIncomingData() const
{
return fileBeingPrinted.IsLive() ||
webserver->GCodeAvailable() ||
(platform->GetLine()->Status() & (uint8_t)IOStatus::byteAvailable) ||
(platform->GetAux()->Status() & (uint8_t)IOStatus::byteAvailable);
}
// This function takes care of the fact that the heater and head indices don't match because the bed is heater 0.
inline int8_t GCodes::Heater(int8_t head) const
{
return head+1;
}
//@TOTO T3P3 cooling inverted applies for both PWM fans
inline bool GCodes::CoolingInverted() const
{
return coolingInverted;
}
inline bool GCodes::AllAxesAreHomed() const
{
return axisIsHomed[X_AXIS] && axisIsHomed[Y_AXIS] && axisIsHomed[Z_AXIS];
}
inline void GCodes::SetAllAxesNotHomed()
{
axisIsHomed[X_AXIS] = axisIsHomed[Y_AXIS] = axisIsHomed[Z_AXIS] = false;
}
#endif