This repository has been archived on 2025-02-01. You can view files and clone it, but cannot push or open issues or pull requests.
reprapfirmware-dc42/Heat.h
David Crocker b30e6ad4e1 Version 0.78p
Fixed bug that caused the cooling fan PWM frequency to be 165kHz. It is
now 25kHz.
Fan RPM is now included in the web interface status response (thanks
zpl).
Many more error messages are now reported to the web interface as well
as the USB interface.
Interrupt-driven network timer task to better cope with slow SD card
writes (thanks zpl)
Module SamNonDuePin is now used for all digital and PWM pin I/O.
2014-08-29 21:38:14 +01:00

260 lines
7 KiB
C++

/****************************************************************************************************
RepRapFirmware - Heat
This is all the code to deal with heat and temperature.
-----------------------------------------------------------------------------------------------------
Version 0.1
18 November 2012
Adrian Bowyer
RepRap Professional Ltd
http://reprappro.com
Licence: GPL
****************************************************************************************************/
#ifndef HEAT_H
#define HEAT_H
/**
* This class implements a PID controller for the heaters
*/
class PID
{
friend class Heat;
protected:
PID(Platform* p, int8_t h);
void Init(); // (Re)Set everything to start
void Spin(); // Called in a tight loop to keep things running
void SetActiveTemperature(float t);
float GetActiveTemperature() const;
void SetStandbyTemperature(float t);
float GetStandbyTemperature() const;
void Activate(); // Switch from idle to active
void Standby(); // Switch from active to idle
bool Active() const; // Are we active?
void SwitchOff(); // Not even standby - all heater power off
bool SwitchedOff() const; // Are we switched off?
void ResetFault(); // Reset a fault condition - only call this if you know what you are doing
float GetTemperature() const; // Get the current temperature
private:
void SwitchOn();
Platform* platform; // The instance of the class that is the RepRap hardware
float activeTemperature; // The required active temperature
float standbyTemperature; // The required standby temperature
float temperature; // The current temperature
float lastTemperature; // The previous current temperature
float temp_iState; // The integral PID component
bool active; // Are we active or standby?
bool switchedOff; // Becomes false when someone tells us our active or standby temperatures
int8_t heater; // The index of our heater
int8_t badTemperatureCount; // Count of sequential dud readings
bool temperatureFault; // Has our heater developed a fault?
float timeSetHeating; // When we were switched on
bool heatingUp; // Are we heating up?
};
/**
* The master class that controls all the heaters in the RepRap machine
*/
class Heat
{
public:
// Enumeration to describe the status of a heater. Note that the web interface returns the numerical values, so don't change them.
enum HeaterStatus { HS_off = 0, HS_standby = 1, HS_active = 2, HS_fault = 3 };
Heat(Platform* p, GCodes* g);
void Spin(); // Called in a tight loop to keep everything going
void Init(); // Set everything up
void Exit(); // Shut everything down
void SetActiveTemperature(int8_t heater, float t);
float GetActiveTemperature(int8_t heater) const;
void SetStandbyTemperature(int8_t heater, float t);
float GetStandbyTemperature(int8_t heater) const;
void Activate(int8_t heater); // Turn on a heater
void Standby(int8_t heater); // Set a heater idle
float GetTemperature(int8_t heater) const; // Get the temperature of a heater
HeaterStatus GetStatus(int8_t heater) const; // Get the off/standby/active status
void SwitchOffAll(); // Turn all heaters off
void ResetFault(int8_t heater); // Reset a heater fault - only call this if you know what you are doing
bool AllHeatersAtSetTemperatures(bool includingBed) const; // Is everything at temperature within tolerance?
bool HeaterAtSetTemperature(int8_t heater) const; // Is a specific heater at temperature within tolerance?
void Diagnostics(); // Output useful information
private:
Platform* platform; // The instance of the RepRap hardware class
GCodes* gCodes; // The instance of the G Code interpreter class
bool active; // Are we active?
PID* pids[HEATERS]; // A PID controller for each heater
float lastTime; // The last time our Spin() was called
float longWait; // Long time for things that happen occasionally
};
//***********************************************************************************************************
inline bool PID::Active() const
{
return active;
}
inline void PID::SetActiveTemperature(float t)
{
SwitchOn();
activeTemperature = t;
}
inline float PID::GetActiveTemperature() const
{
return activeTemperature;
}
inline void PID::SetStandbyTemperature(float t)
{
SwitchOn();
standbyTemperature = t;
}
inline float PID::GetStandbyTemperature() const
{
return standbyTemperature;
}
inline float PID::GetTemperature() const
{
return temperature;
}
inline void PID::Activate()
{
SwitchOn();
active = true;
if(!heatingUp)
{
timeSetHeating = platform->Time();
}
heatingUp = activeTemperature > temperature;
}
inline void PID::Standby()
{
SwitchOn();
active = false;
if(!heatingUp)
{
timeSetHeating = platform->Time();
}
heatingUp = standbyTemperature > temperature;
}
inline void PID::ResetFault()
{
temperatureFault = false;
badTemperatureCount = 0;
}
inline void PID::SwitchOff()
{
platform->SetHeater(heater, 0.0);
active = false;
switchedOff = true;
heatingUp = false;
}
inline bool PID::SwitchedOff() const
{
return switchedOff;
}
//**********************************************************************************
// Heat
inline Heat::HeaterStatus Heat::GetStatus(int8_t heater) const
{
if (heater < 0 || heater >= HEATERS)
return HS_off;
return (pids[heater]->temperatureFault ? HS_fault
: pids[heater]->SwitchedOff()) ? HS_off
: (pids[heater]->Active()) ? HS_active
: HS_standby;
}
inline void Heat::SetActiveTemperature(int8_t heater, float t)
{
if (heater >= 0 && heater < HEATERS)
{
pids[heater]->SetActiveTemperature(t);
}
}
inline float Heat::GetActiveTemperature(int8_t heater) const
{
return (heater >= 0 && heater < HEATERS) ? pids[heater]->GetActiveTemperature() : ABS_ZERO;
}
inline void Heat::SetStandbyTemperature(int8_t heater, float t)
{
if (heater >= 0 && heater < HEATERS)
{
pids[heater]->SetStandbyTemperature(t);
}
}
inline float Heat::GetStandbyTemperature(int8_t heater) const
{
return (heater >= 0 && heater < HEATERS) ? pids[heater]->GetStandbyTemperature() : ABS_ZERO;
}
inline float Heat::GetTemperature(int8_t heater) const
{
return (heater >= 0 && heater < HEATERS) ? pids[heater]->GetTemperature() : ABS_ZERO;
}
inline void Heat::Activate(int8_t heater)
{
if (heater >= 0 && heater < HEATERS)
{
pids[heater]->Activate();
}
}
inline void Heat::SwitchOffAll()
{
for (int8_t heater = 0; heater < HEATERS; ++heater)
{
pids[heater]->SwitchOff();
}
}
inline void Heat::Standby(int8_t heater)
{
if (heater >= 0 && heater < HEATERS)
{
pids[heater]->Standby();
}
}
inline void Heat::ResetFault(int8_t heater)
{
if (heater >= 0 && heater < HEATERS)
{
pids[heater]->ResetFault();
}
}
#endif