This repository has been archived on 2025-02-01. You can view files and clone it, but cannot push or open issues or pull requests.
reprapfirmware-dc42/Platform.cpp
2013-11-30 15:48:03 +00:00

1260 lines
26 KiB
C++

/****************************************************************************************************
RepRapFirmware - Platform: RepRapPro Mendel with Prototype Arduino Due controller
Platform contains all the code and definitons to deal with machine-dependent things such as control
pins, bed area, number of extruders, tolerable accelerations and speeds and so on.
-----------------------------------------------------------------------------------------------------
Version 0.1
18 November 2012
Adrian Bowyer
RepRap Professional Ltd
http://reprappro.com
Licence: GPL
****************************************************************************************************/
#include "RepRapFirmware.h"
// Arduino initialise and loop functions
// Put nothing in these other than calls to the RepRap equivalents
void setup()
{
reprap.Init();
//reprap.GetMove()->InterruptTime(); // Uncomment this line to time the interrupt routine on startup
}
void loop()
{
reprap.Spin();
}
//*************************************************************************************************
Platform::Platform()
{
fileStructureInitialised = false;
line = new Line();
// Files
massStorage = new MassStorage(this);
for(int8_t i=0; i < MAX_FILES; i++)
files[i] = new FileStore(this);
network = new Network();
active = false;
}
//*******************************************************************************************************************
void Platform::Init()
{
byte i;
compatibility = me;
line->Init();
messageIndent = 0;
//network->Init();
massStorage->Init();
for(i=0; i < MAX_FILES; i++)
files[i]->Init();
fileStructureInitialised = true;
mcp.begin();
sysDir = SYS_DIR;
configFile = CONFIG_FILE;
ipAddress = IP_ADDRESS;
netMask = NET_MASK;
gateWay = GATE_WAY;
// DRIVES
stepPins = STEP_PINS;
directionPins = DIRECTION_PINS;
enablePins = ENABLE_PINS;
disableDrives = DISABLE_DRIVES;
lowStopPins = LOW_STOP_PINS;
highStopPins = HIGH_STOP_PINS;
maxFeedrates = MAX_FEEDRATES;
accelerations = ACCELERATIONS;
driveStepsPerUnit = DRIVE_STEPS_PER_UNIT;
instantDvs = INSTANT_DVS;
potWipes = POT_WIPES;
senseResistor = SENSE_RESISTOR;
maxStepperDigipotVoltage = MAX_STEPPER_DIGIPOT_VOLTAGE;
zProbePin = -1; // Default is to use the switch
zProbeCount = 0;
zProbeSum = 0;
zProbeValue = 0;
zProbeADValue = Z_PROBE_AD_VALUE;
zProbeStopHeight = Z_PROBE_STOP_HEIGHT;
// AXES
axisLengths = AXIS_LENGTHS;
homeFeedrates = HOME_FEEDRATES;
headOffsets = HEAD_OFFSETS;
// HEATERS - Bed is assumed to be the first
tempSensePins = TEMP_SENSE_PINS;
heatOnPins = HEAT_ON_PINS;
thermistorBetas = THERMISTOR_BETAS;
thermistorSeriesRs = THERMISTOR_SERIES_RS;
thermistorInfRs = THERMISTOR_25_RS;
usePID = USE_PID;
pidKis = PID_KIS;
pidKds = PID_KDS;
pidKps = PID_KPS;
fullPidBand = FULL_PID_BAND;
pidMin = PID_MIN;
pidMax = PID_MAX;
dMix = D_MIX;
heatSampleTime = HEAT_SAMPLE_TIME;
standbyTemperatures = STANDBY_TEMPERATURES;
activeTemperatures = ACTIVE_TEMPERATURES;
coolingFanPin = COOLING_FAN_PIN;
webDir = WEB_DIR;
gcodeDir = GCODE_DIR;
tempDir = TEMP_DIR;
for(i = 0; i < DRIVES; i++)
{
if(stepPins[i] >= 0)
{
if(i > Z_AXIS)
pinModeNonDue(stepPins[i], OUTPUT);
else
pinMode(stepPins[i], OUTPUT);
}
if(directionPins[i] >= 0)
{
if(i > Z_AXIS)
pinModeNonDue(directionPins[i], OUTPUT);
else
pinMode(directionPins[i], OUTPUT);
}
if(enablePins[i] >= 0)
{
if(i >= Z_AXIS)
pinModeNonDue(enablePins[i], OUTPUT);
else
pinMode(enablePins[i], OUTPUT);
}
Disable(i);
driveEnabled[i] = false;
}
for(i = 0; i < AXES; i++)
{
if(lowStopPins[i] >= 0)
{
pinMode(lowStopPins[i], INPUT);
digitalWrite(lowStopPins[i], HIGH); // Turn on pullup
}
if(highStopPins[i] >= 0)
{
pinMode(highStopPins[i], INPUT);
digitalWrite(highStopPins[i], HIGH); // Turn on pullup
}
}
if(heatOnPins[0] >= 0)
pinMode(heatOnPins[0], OUTPUT);
thermistorInfRs[0] = ( thermistorInfRs[0]*exp(-thermistorBetas[0]/(25.0 - ABS_ZERO)) );
for(i = 1; i < HEATERS; i++)
{
if(heatOnPins[i] >= 0)
pinModeNonDue(heatOnPins[i], OUTPUT);
thermistorInfRs[i] = ( thermistorInfRs[i]*exp(-thermistorBetas[i]/(25.0 - ABS_ZERO)) );
}
if(zProbePin >= 0)
pinMode(zProbePin, INPUT);
if(coolingFanPin >= 0)
{
pinMode(coolingFanPin, OUTPUT);
analogWrite(coolingFanPin, 0);
}
InitialiseInterrupts();
addToTime = 0.0;
lastTimeCall = 0;
lastTime = Time();
longWait = lastTime;
active = true;
}
void Platform::StartNetwork()
{
network->Init();
}
void Platform::Spin()
{
if(!active)
return;
network->Spin();
line->Spin();
if(Time() - lastTime < 0.006)
return;
PollZHeight();
lastTime = Time();
ClassReport("Platform", longWait);
}
//*****************************************************************************************************************
// Interrupts
void TC3_Handler()
{
TC_GetStatus(TC1, 0);
reprap.Interrupt();
}
void Platform::InitialiseInterrupts()
{
pmc_set_writeprotect(false);
pmc_enable_periph_clk((uint32_t)TC3_IRQn);
TC_Configure(TC1, 0, TC_CMR_WAVE | TC_CMR_WAVSEL_UP_RC | TC_CMR_TCCLKS_TIMER_CLOCK4);
TC1->TC_CHANNEL[0].TC_IER=TC_IER_CPCS;
TC1->TC_CHANNEL[0].TC_IDR=~TC_IER_CPCS;
SetInterrupt(STANDBY_INTERRUPT_RATE);
}
void Platform::DisableInterrupts()
{
NVIC_DisableIRQ(TC3_IRQn);
}
//*************************************************************************************************
void Platform::Diagnostics()
{
Message(HOST_MESSAGE, "Platform Diagnostics:\n");
}
extern char _end;
extern "C" char *sbrk(int i);
void Platform::PrintMemoryUsage()
{
char *ramstart=(char *)0x20070000;
char *ramend=(char *)0x20088000;
char *heapend=sbrk(0);
register char * stack_ptr asm ("sp");
struct mallinfo mi=mallinfo();
Message(HOST_MESSAGE, "\n");
Message(HOST_MESSAGE, "Memory usage:\n\n");
snprintf(scratchString, STRING_LENGTH, "Dynamic ram used: %d\n",mi.uordblks);
Message(HOST_MESSAGE, scratchString);
snprintf(scratchString, STRING_LENGTH, "Program static ram used: %d\n",&_end - ramstart);
Message(HOST_MESSAGE, scratchString);
snprintf(scratchString, STRING_LENGTH, "Stack ram used: %d\n",ramend - stack_ptr);
Message(HOST_MESSAGE, scratchString);
snprintf(scratchString, STRING_LENGTH, "Guess at free mem: %d\n\n",stack_ptr - heapend + mi.fordblks);
Message(HOST_MESSAGE, scratchString);
}
void Platform::ClassReport(char* className, float &lastTime)
{
if(!reprap.Debug())
return;
if(Time() - lastTime < LONG_TIME)
return;
lastTime = Time();
snprintf(scratchString, STRING_LENGTH, "Class %s spinning.\n", className);
Message(HOST_MESSAGE, scratchString);
}
//===========================================================================
//=============================Thermal Settings ============================
//===========================================================================
// See http://en.wikipedia.org/wiki/Thermistor#B_or_.CE.B2_parameter_equation
// BETA is the B value
// RS is the value of the series resistor in ohms
// R_INF is R0.exp(-BETA/T0), where R0 is the thermistor resistance at T0 (T0 is in kelvin)
// Normally T0 is 298.15K (25 C). If you write that expression in brackets in the #define the compiler
// should compute it for you (i.e. it won't need to be calculated at run time).
// If the A->D converter has a range of 0..1023 and the measured voltage is V (between 0 and 1023)
// then the thermistor resistance, R = V.RS/(1023 - V)
// and the temperature, T = BETA/ln(R/R_INF)
// To get degrees celsius (instead of kelvin) add -273.15 to T
//#define THERMISTOR_R_INFS ( THERMISTOR_25_RS*exp(-THERMISTOR_BETAS/298.15) ) // Compute in Platform constructor
// Result is in degrees celsius
float Platform::GetTemperature(int8_t heater)
{
float r = (float)GetRawTemperature(heater);
return ABS_ZERO + thermistorBetas[heater]/log( (r*thermistorSeriesRs[heater]/(AD_RANGE - r))/thermistorInfRs[heater] );
}
// power is a fraction in [0,1]
void Platform::SetHeater(int8_t heater, const float& power)
{
if(heatOnPins[heater] < 0)
return;
byte p = (byte)(255.0*fmin(1.0, fmax(0.0, power)));
if(HEAT_ON == 0)
p = 255 - p;
if(heater == 0)
analogWrite(heatOnPins[heater], p);
else
analogWriteNonDue(heatOnPins[heater], p);
}
inline void Platform::PollZHeight()
{
if(zProbeCount >= 5)
{
zProbeValue = zProbeSum/5;
zProbeSum = 0;
zProbeCount = 0;
}
zProbeSum += GetRawZHeight();
zProbeCount++;
}
EndStopHit Platform::Stopped(int8_t drive)
{
if(zProbePin >= 0)
{ // Z probe is used for both X and Z.
if(drive != Y_AXIS)
{
if(ZProbe() > zProbeADValue)
return lowHit;
else
return noStop;
}
}
if(lowStopPins[drive] >= 0)
{
if(digitalRead(lowStopPins[drive]) == ENDSTOP_HIT)
return lowHit;
}
if(highStopPins[drive] >= 0)
{
if(digitalRead(highStopPins[drive]) == ENDSTOP_HIT)
return highHit;
}
return noStop;
}
/*********************************************************************************
Files & Communication
*/
MassStorage::MassStorage(Platform* p)
{
platform = p;
}
void MassStorage::Init()
{
hsmciPinsinit();
// Initialize SD MMC stack
sd_mmc_init();
int sdPresentCount = 0;
while ((CTRL_NO_PRESENT == sd_mmc_check(0)) && (sdPresentCount < 5))
{
//platform->Message(HOST_MESSAGE, "Please plug in the SD card.\n");
//delay(1000);
sdPresentCount++;
}
if(sdPresentCount >= 5)
{
platform->Message(HOST_MESSAGE, "Can't find the SD card.\n");
return;
}
//print card info
// SerialUSB.print("sd_mmc_card->capacity: ");
// SerialUSB.print(sd_mmc_get_capacity(0));
// SerialUSB.print(" bytes\n");
// SerialUSB.print("sd_mmc_card->clock: ");
// SerialUSB.print(sd_mmc_get_bus_clock(0));
// SerialUSB.print(" Hz\n");
// SerialUSB.print("sd_mmc_card->bus_width: ");
// SerialUSB.println(sd_mmc_get_bus_width(0));
memset(&fileSystem, 0, sizeof(FATFS));
//f_mount (LUN_ID_SD_MMC_0_MEM, NULL);
//int mounted = f_mount(LUN_ID_SD_MMC_0_MEM, &fileSystem);
int mounted = f_mount(0, &fileSystem);
if (mounted != FR_OK)
{
platform->Message(HOST_MESSAGE, "Can't mount filesystem 0: code ");
snprintf(scratchString, STRING_LENGTH, "%d", mounted);
platform->Message(HOST_MESSAGE, scratchString);
platform->Message(HOST_MESSAGE, "\n");
}
}
char* MassStorage::CombineName(char* directory, char* fileName)
{
int out = 0;
int in = 0;
// scratchString[out] = '/';
// out++;
if(directory != NULL)
{
//if(directory[in] == '/')
// in++;
while(directory[in] != 0 && directory[in] != '\n')// && directory[in] != '/')
{
scratchString[out] = directory[in];
in++;
out++;
if(out >= STRING_LENGTH)
{
platform->Message(HOST_MESSAGE, "CombineName() buffer overflow.");
out = 0;
}
}
}
//scratchString[out] = '/';
// out++;
in = 0;
while(fileName[in] != 0 && fileName[in] != '\n')// && fileName[in] != '/')
{
scratchString[out] = fileName[in];
in++;
out++;
if(out >= STRING_LENGTH)
{
platform->Message(HOST_MESSAGE, "CombineName() buffer overflow.");
out = 0;
}
}
scratchString[out] = 0;
return scratchString;
}
// List the flat files in a directory. No sub-directories or recursion.
char* MassStorage::FileList(char* directory, bool fromLine)
{
// File dir, entry;
DIR dir;
FILINFO entry;
FRESULT res;
char loc[64];
int len = 0;
char fileListBracket = FILE_LIST_BRACKET;
char fileListSeparator = FILE_LIST_SEPARATOR;
if(fromLine)
{
if(platform->Emulating() == marlin)
{
fileListBracket = 0;
fileListSeparator = '\n';
}
}
len = strlen(directory);
strncpy(loc,directory,len-1);
loc[len - 1 ] = 0;
// if(reprap.debug()) {
// platform->Message(HOST_MESSAGE, "Opening: ");
// platform->Message(HOST_MESSAGE, loc);
// platform->Message(HOST_MESSAGE, "\n");
// }
res = f_opendir(&dir,loc);
if(res == FR_OK)
{
// if(reprap.debug()) {
// platform->Message(HOST_MESSAGE, "Directory open\n");
// }
int p = 0;
// int q;
int foundFiles = 0;
f_readdir(&dir,0);
while((f_readdir(&dir,&entry) == FR_OK) && (foundFiles < 24))
{
foundFiles++;
if(strlen(entry.fname) > 0)
{
int q = 0;
if(fileListBracket)
fileList[p++] = fileListBracket;
while(entry.fname[q])
{
fileList[p++] = entry.fname[q];
//SerialUSB.print(entry.fname[q]);
q++;
if(p >= FILE_LIST_LENGTH - 10) // Caution...
{
platform->Message(HOST_MESSAGE, "FileList - directory: ");
platform->Message(HOST_MESSAGE, directory);
platform->Message(HOST_MESSAGE, " has too many files!\n");
return "";
}
}
if(fileListBracket)
fileList[p++] = fileListBracket;
fileList[p++] = fileListSeparator;
}
}
if(foundFiles <= 0)
return "NONE";
fileList[--p] = 0; // Get rid of the last separator
return fileList;
}
return "";
}
// Delete a file
bool MassStorage::Delete(char* directory, char* fileName)
{
char* location = platform->GetMassStorage()->CombineName(directory, fileName);
if( f_unlink (location) != FR_OK)
{
platform->Message(HOST_MESSAGE, "Can't delete file ");
platform->Message(HOST_MESSAGE, location);
platform->Message(HOST_MESSAGE, "\n");
return false;
}
return true;
}
//------------------------------------------------------------------------------------------------
FileStore::FileStore(Platform* p)
{
platform = p;
}
void FileStore::Init()
{
bufferPointer = 0;
inUse = false;
writing = false;
lastBufferEntry = 0;
}
// Open a local file (for example on an SD card).
// This is protected - only Platform can access it.
bool FileStore::Open(char* directory, char* fileName, bool write)
{
char* location = platform->GetMassStorage()->CombineName(directory, fileName);
writing = write;
lastBufferEntry = FILE_BUF_LEN - 1;
FRESULT openReturn;
if(writing)
{
openReturn = f_open(&file, location, FA_CREATE_ALWAYS | FA_WRITE);
if (openReturn != FR_OK)
{
platform->Message(HOST_MESSAGE, "Can't open ");
platform->Message(HOST_MESSAGE, location);
platform->Message(HOST_MESSAGE, " to write to. Error code: ");
snprintf(scratchString, STRING_LENGTH, "%d", openReturn);
platform->Message(HOST_MESSAGE, scratchString);
platform->Message(HOST_MESSAGE, "\n");
return false;
}
bufferPointer = 0;
} else
{
openReturn = f_open(&file, location, FA_OPEN_EXISTING | FA_READ);
if (openReturn != FR_OK)
{
platform->Message(HOST_MESSAGE, "Can't open ");
platform->Message(HOST_MESSAGE, location);
platform->Message(HOST_MESSAGE, " to read from. Error code: ");
snprintf(scratchString, STRING_LENGTH, "%d", openReturn);
platform->Message(HOST_MESSAGE, scratchString);
platform->Message(HOST_MESSAGE, "\n");
return false;
}
bufferPointer = FILE_BUF_LEN;
}
inUse = true;
return true;
}
void FileStore::Close()
{
if(writing)
WriteBuffer();
f_close(&file);
platform->ReturnFileStore(this);
inUse = false;
writing = false;
lastBufferEntry = 0;
}
void FileStore::GoToEnd()
{
if(!inUse)
{
platform->Message(HOST_MESSAGE, "Attempt to seek on a non-open file.\n");
return;
}
unsigned long e = Length();
f_lseek(&file, e);
}
unsigned long FileStore::Length()
{
if(!inUse)
{
platform->Message(HOST_MESSAGE, "Attempt to size non-open file.\n");
return 0;
}
return file.fsize;
return 0;
}
int8_t FileStore::Status()
{
if(!inUse)
return nothing;
if(lastBufferEntry == FILE_BUF_LEN)
return byteAvailable;
if(bufferPointer < lastBufferEntry)
return byteAvailable;
return nothing;
}
void FileStore::ReadBuffer()
{
FRESULT readStatus;
readStatus = f_read(&file, buf, FILE_BUF_LEN, &lastBufferEntry); // Read a chunk of file
if (readStatus)
{
platform->Message(HOST_MESSAGE, "Error reading file.\n");
}
bufferPointer = 0;
}
bool FileStore::Read(char& b)
{
if(!inUse)
{
platform->Message(HOST_MESSAGE, "Attempt to read from a non-open file.\n");
return false;
}
if(bufferPointer >= FILE_BUF_LEN)
ReadBuffer();
if(bufferPointer >= lastBufferEntry)
{
b = 0; // Good idea?
return false;
}
b = (char)buf[bufferPointer];
bufferPointer++;
return true;
}
void FileStore::WriteBuffer()
{
FRESULT writeStatus;
writeStatus = f_write(&file, buf, bufferPointer, &lastBufferEntry);
if((writeStatus != FR_OK) || (lastBufferEntry != bufferPointer))
{
platform->Message(HOST_MESSAGE, "Error writing file. Disc may be full.\n");
}
bufferPointer = 0;
}
void FileStore::Write(char b)
{
if(!inUse)
{
platform->Message(HOST_MESSAGE, "Attempt to write byte to a non-open file.\n");
return;
}
buf[bufferPointer] = b;
bufferPointer++;
if(bufferPointer >= FILE_BUF_LEN)
WriteBuffer();
}
void FileStore::Write(char* b)
{
if(!inUse)
{
platform->Message(HOST_MESSAGE, "Attempt to write string to a non-open file.\n");
return;
}
int i = 0;
while(b[i])
Write(b[i++]);
}
//-----------------------------------------------------------------------------------------------------
FileStore* Platform::GetFileStore(char* directory, char* fileName, bool write)
{
FileStore* result = NULL;
if(!fileStructureInitialised)
return NULL;
for(int i = 0; i < MAX_FILES; i++)
if(!files[i]->inUse)
{
files[i]->inUse = true;
if(files[i]->Open(directory, fileName, write))
return files[i];
else
{
files[i]->inUse = false;
return NULL;
}
}
Message(HOST_MESSAGE, "Max open file count exceeded.\n");
return NULL;
}
MassStorage* Platform::GetMassStorage()
{
return massStorage;
}
void Platform::ReturnFileStore(FileStore* fs)
{
for(int i = 0; i < MAX_FILES; i++)
if(files[i] == fs)
{
files[i]->inUse = false;
return;
}
}
void Platform::Message(char type, char* message)
{
switch(type)
{
case FLASH_LED:
// Message that is to flash an LED; the next two bytes define
// the frequency and M/S ratio.
break;
case DISPLAY_MESSAGE:
// Message that is to appear on a local display; \f and \n should be supported.
case HOST_MESSAGE:
default:
// FileStore* m = GetFileStore(GetWebDir(), MESSAGE_FILE, true);
// if(m != NULL)
// {
// m->GoToEnd();
// m->Write(message);
// m->Close();
// } else
// line->Write("Can't open message file.\n");
for(uint8_t i = 0; i < messageIndent; i++)
line->Write(' ');
line->Write(message);
}
}
//***************************************************************************************************
// Serial/USB class
Line::Line()
{
}
void Line::Init()
{
// alternateInput = NULL;
// alternateOutput = NULL;
SerialUSB.begin(BAUD_RATE);
//while (!SerialUSB.available());
}
//***************************************************************************************************
// Network/Ethernet class
// C calls to interface with LWIP (http://savannah.nongnu.org/projects/lwip/)
// These are implemented in, and called from, a modified version of httpd.c
// in the network directory.
extern "C"
{
//void ResetEther();
// Transmit data to the Network
void RepRapNetworkSendOutput(char* data, int length, void* pbuf, void* pcb, void* hs);
// When lwip releases storage, set the local copy of the pointer to 0 to stop
// it being used again.
void RepRapNetworkInputBufferReleased(void* pb)
{
reprap.GetPlatform()->GetNetwork()->InputBufferReleased(pb);
}
void RepRapNetworkHttpStateReleased(void* h)
{
reprap.GetPlatform()->GetNetwork()->HttpStateReleased(h);
}
// Called to put out a message via the RepRap firmware.
void RepRapNetworkMessage(char* s)
{
reprap.GetPlatform()->Message(HOST_MESSAGE, s);
}
// Called to push data into the RepRap firmware.
void RepRapNetworkReceiveInput(char* data, int length, void* pbuf, void* pcb, void* hs)
{
reprap.GetPlatform()->GetNetwork()->ReceiveInput(data, length, pbuf, pcb, hs);
}
// Called when transmission of outgoing data is complete to allow
// the RepRap firmware to write more.
void RepRapNetworkAllowWriting()
{
reprap.GetPlatform()->GetNetwork()->SetWriteEnable(true);
}
bool RepRapNetworkHasALiveClient()
{
return reprap.GetPlatform()->GetNetwork()->Status() & clientLive;
}
}
Network::Network()
{
active = false;
ethPinsInit();
//ResetEther();
// Construct the ring buffer
netRingAddPointer = new NetRing(NULL);
netRingGetPointer = netRingAddPointer;
for(int8_t i = 1; i < HTTP_STATE_SIZE; i++)
netRingGetPointer = new NetRing(netRingGetPointer);
netRingAddPointer->SetNext(netRingGetPointer);
}
// Reset the network to its disconnected and ready state.
void Network::Reset()
{
//reprap.GetPlatform()->Message(HOST_MESSAGE, "Reset.\n");
inputPointer = 0;
inputLength = -1;
outputPointer = 0;
writeEnabled = false;
closePending = false;
status = nothing;
}
void Network::CleanRing()
{
for(int8_t i = 0; i <= HTTP_STATE_SIZE; i++)
{
netRingGetPointer->Free();
netRingGetPointer = netRingGetPointer->Next();
}
netRingAddPointer = netRingGetPointer;
}
void Network::Init()
{
CleanRing();
Reset();
// if(LinkIsUp())
// reprap.GetPlatform()->SetHeater(0,1.0);
// else
// reprap.GetPlatform()->SetHeater(0,0.0);
if(!NETWORK) // NETWORK needs to be true to turn on the ethernet. It is defined in Configuration.h
return;
init_ethernet(reprap.GetPlatform()->IPAddress(), reprap.GetPlatform()->NetMask(), reprap.GetPlatform()->GateWay());
active = true;
}
void Network::Spin()
{
if(!active)
{
//ResetEther();
return;
}
// Keep the Ethernet running
ethernet_task();
// Anything come in from the network to act on?
if(!netRingGetPointer->Active())
return;
// Finished reading the active ring element?
if(!netRingGetPointer->ReadFinished())
{
// No - Finish reading any data that's been received.
if(inputPointer < inputLength)
return;
// Haven't started reading it yet - set that up.
inputPointer = 0;
inputLength = netRingGetPointer->Length();
inputBuffer = netRingGetPointer->Data();
}
}
// Webserver calls this to read bytes that have come in from the network
bool Network::Read(char& b)
{
if(inputPointer >= inputLength)
{
inputLength = -1;
inputPointer = 0;
netRingGetPointer->SetReadFinished(); // Past tense...
SetWriteEnable(true);
//reprap.GetPlatform()->Message(HOST_MESSAGE, "Network - data read.\n");
return false;
}
b = inputBuffer[inputPointer];
inputPointer++;
return true;
}
// Webserver calls this to write bytes that need to go out to the network
void Network::Write(char b)
{
// Check for horrible things...
if(!writeEnabled)
{
reprap.GetPlatform()->Message(HOST_MESSAGE, "Network::Write(char b) - Attempt to write when disabled.\n");
return;
}
if(outputPointer >= STRING_LENGTH)
{
reprap.GetPlatform()->Message(HOST_MESSAGE, "Network::Write(char b) - Output buffer overflow! \n");
return;
}
// Add the byte to the buffer
outputBuffer[outputPointer] = b;
outputPointer++;
// Buffer full? If so, send it.
if(outputPointer >= STRING_LENGTH - 5) // 5 is for safety
{
SetWriteEnable(false); // Stop further writing from Webserver until the network tells us that this has gone
RepRapNetworkSendOutput(outputBuffer, outputPointer, netRingGetPointer->Pbuf(), netRingGetPointer->Pcb(), netRingGetPointer->Hs());
outputPointer = 0;
}
}
void Network::InputBufferReleased(void* pb)
{
if(netRingGetPointer->Pbuf() != pb)
{
reprap.GetPlatform()->Message(HOST_MESSAGE, "Network::InputBufferReleased() - Pointers don't match!\n");
return;
}
netRingGetPointer->ReleasePbuf();
}
void Network::HttpStateReleased(void* h)
{
if(netRingGetPointer->Hs() != h)
{
reprap.GetPlatform()->Message(HOST_MESSAGE, "Network::HttpStateReleased() - Pointers don't match!\n");
return;
}
netRingGetPointer->ReleaseHs();
}
void Network::ReceiveInput(char* data, int length, void* pbuf, void* pcb, void* hs)
{
status = clientLive;
if(netRingAddPointer->Active())
{
reprap.GetPlatform()->Message(HOST_MESSAGE, "Network::ReceiveInput() - Ring buffer full!\n");
return;
}
netRingAddPointer->Set(data, length, pbuf, pcb, hs);
netRingAddPointer = netRingAddPointer->Next();
//reprap.GetPlatform()->Message(HOST_MESSAGE, "Network - input received.\n");
}
bool Network::CanWrite()
{
return writeEnabled;
}
void Network::SetWriteEnable(bool enable)
{
writeEnabled = enable;
if(!writeEnabled)
return;
if(closePending)
Close();
}
// This is not called for data, only for internally-
// generated short strings at the start of a transmission,
// so it should never overflow the buffer (which is checked
// anyway).
void Network::Write(char* s)
{
int i = 0;
while(s[i])
Write(s[i++]);
}
void Network::Close()
{
if(Status() && clientLive)
{
if(outputPointer > 0)
{
SetWriteEnable(false);
RepRapNetworkSendOutput(outputBuffer, outputPointer, netRingGetPointer->Pbuf(), netRingGetPointer->Pcb(), netRingGetPointer->Hs());
outputPointer = 0;
closePending = true;
return;
}
RepRapNetworkSendOutput((char*)NULL, 0, netRingGetPointer->Pbuf(), netRingGetPointer->Pcb(), netRingGetPointer->Hs());
netRingGetPointer->Free();
netRingGetPointer = netRingGetPointer->Next();
//reprap.GetPlatform()->Message(HOST_MESSAGE, "Network - output sent and closed.\n");
} else
reprap.GetPlatform()->Message(HOST_MESSAGE, "Network::Close() - Attempt to close a closed connection!\n");
closePending = false;
status = nothing;
//Reset();
}
int8_t Network::Status()
{
if(inputPointer >= inputLength)
return status;
return status | clientConnected | byteAvailable;
}
NetRing::NetRing(NetRing* n)
{
next = n;
Free();
}
void NetRing::Free()
{
pbuf = 0;
pcb = 0;
hs = 0;
data = "";
length = 0;
read = false;
active = false;
}
bool NetRing::Set(char* d, int l, void* pb, void* pc, void* h)
{
if(active)
return false;
pbuf = pb;
pcb = pc;
hs = h;
data = d;
length = l;
read = false;
active = true;
return true;
}
NetRing* NetRing::Next()
{
return next;
}
char* NetRing::Data()
{
return data;
}
int NetRing::Length()
{
return length;
}
bool NetRing::ReadFinished()
{
return read;
}
void NetRing::SetReadFinished()
{
read = true;
}
bool NetRing::Active()
{
return active;
}
void NetRing::SetNext(NetRing* n)
{
next = n;
}
void* NetRing::Pbuf()
{
return pbuf;
}
void NetRing::ReleasePbuf()
{
pbuf = 0;
}
void* NetRing::Pcb()
{
return pcb;
}
void* NetRing::Hs()
{
return hs;
}
void NetRing::ReleaseHs()
{
hs = 0;
}