This repository has been archived on 2025-02-01. You can view files and clone it, but cannot push or open issues or pull requests.
reprapfirmware-dc42/Platform.cpp
David Crocker 75829fcaad File upload + other improvements
Added new request code rr_data for file uploading, and made other
changes to improve file upload speed.
Implemented S parameter to M208 command, to allow the negative limits of
axes to be set. Also reports current limits of no X/Y/Z parameter.
Reduced max reported free buffer size to 950 bytes to avoid problems
with file upload from Windows 8.1.
2014-05-18 20:57:14 +01:00

1676 lines
42 KiB
C++

/****************************************************************************************************
RepRapFirmware - Platform: RepRapPro Ormerod with Arduino Due controller
Platform contains all the code and definitions to deal with machine-dependent things such as control
pins, bed area, number of extruders, tolerable accelerations and speeds and so on.
-----------------------------------------------------------------------------------------------------
Version 0.1
18 November 2012
Adrian Bowyer
RepRap Professional Ltd
http://reprappro.com
Licence: GPL
****************************************************************************************************/
#include "RepRapFirmware.h"
#include "DueFlashStorage.h"
#define WINDOWED_SEND_PACKETS (2)
extern char _end;
extern "C" char *sbrk(int i);
const uint8_t memPattern = 0xA5;
// Arduino initialise and loop functions
// Put nothing in these other than calls to the RepRap equivalents
void setup()
{
// Fill the free memory with a pattern so that we can check for stack usage and memory corruption
char* heapend = sbrk(0);
register const char * stack_ptr asm ("sp");
while (heapend + 16 < stack_ptr)
{
*heapend++ = memPattern;
}
reprap.Init();
//reprap.GetMove()->InterruptTime(); // Uncomment this line to time the interrupt routine on startup
}
void loop()
{
reprap.Spin();
}
extern "C"
{
// This intercepts the 1ms system tick. It must return 'false', otherwise the Arduino core tick handler will be bypassed.
int sysTickHook()
{
reprap.Tick();
return 0;
}
}
//*************************************************************************************************
// PidParameters class
bool PidParameters::UsePID() const
{
return kP >= 0;
}
float PidParameters::GetThermistorR25() const
{
return thermistorInfR * exp(thermistorBeta / (25.0 - ABS_ZERO));
}
void PidParameters::SetThermistorR25AndBeta(float r25, float beta)
{
thermistorInfR = r25 * exp(-beta / (25.0 - ABS_ZERO));
thermistorBeta = beta;
}
bool PidParameters::operator==(const PidParameters& other) const
{
return kI == other.kI && kD == other.kD && kP == other.kP && fullBand == other.fullBand && pidMin == other.pidMin
&& pidMax == other.pidMax && thermistorBeta == other.thermistorBeta && thermistorInfR == other.thermistorInfR
&& thermistorSeriesR == other.thermistorSeriesR && adcLowOffset == other.adcLowOffset
&& adcHighOffset == other.adcHighOffset;
}
//*************************************************************************************************
// Platform class
Platform::Platform() :
tickState(0), fileStructureInitialised(false), active(false), errorCodeBits(0), debugCode(0)
{
line = new Line();
// Files
massStorage = new MassStorage(this);
for (int8_t i = 0; i < MAX_FILES; i++)
{
files[i] = new FileStore(this);
}
}
//*******************************************************************************************************************
void Platform::Init()
{
digitalWrite(atxPowerPin, LOW); // ensure ATX power is off by default
pinMode(atxPowerPin, OUTPUT);
DueFlashStorage::init();
DueFlashStorage::read(nvAddress, &nvData, sizeof(nvData));
if (nvData.magic != FlashData::magicValue)
{
// Nonvolatile data has not been initialized since the firmware was last written, so set up default values
nvData.compatibility = me;
nvData.ipAddress = IP_ADDRESS;
nvData.netMask = NET_MASK;
nvData.gateWay = GATE_WAY;
nvData.zProbeType = 0; // Default is to use the switch
nvData.switchZProbeParameters.Init(0.0);
nvData.irZProbeParameters.Init(Z_PROBE_STOP_HEIGHT);
nvData.ultrasonicZProbeParameters.Init(Z_PROBE_STOP_HEIGHT);
for (size_t i = 0; i < HEATERS; ++i)
{
PidParameters& pp = nvData.pidParams[i];
pp.thermistorSeriesR = defaultThermistorSeriesRs[i];
pp.SetThermistorR25AndBeta(defaultThermistor25RS[i], defaultThermistorBetas[i]);
pp.kI = defaultPidKis[i];
pp.kD = defaultPidKds[i];
pp.kP = defaultPidKps[i];
pp.fullBand = defaultFullBand[i];
pp.pidMin = defaultPidMin[i];
pp.pidMax = defaultPidMax[i];
pp.adcLowOffset = pp.adcHighOffset = 0.0;
}
nvData.resetReason = 0;
GetStackUsage(NULL, NULL, &nvData.neverUsedRam);
nvData.magic = FlashData::magicValue;
WriteNvData();
}
line->Init();
messageIndent = 0;
massStorage->Init();
for (size_t i = 0; i < MAX_FILES; i++)
{
files[i]->Init();
}
fileStructureInitialised = true;
mcp.begin();
sysDir = SYS_DIR;
configFile = CONFIG_FILE;
// DRIVES
stepPins = STEP_PINS;
directionPins = DIRECTION_PINS;
enablePins = ENABLE_PINS;
disableDrives = DISABLE_DRIVES;
lowStopPins = LOW_STOP_PINS;
highStopPins = HIGH_STOP_PINS;
maxFeedrates = MAX_FEEDRATES;
accelerations = ACCELERATIONS;
driveStepsPerUnit = DRIVE_STEPS_PER_UNIT;
instantDvs = INSTANT_DVS;
potWipes = POT_WIPES;
senseResistor = SENSE_RESISTOR;
maxStepperDigipotVoltage = MAX_STEPPER_DIGIPOT_VOLTAGE;
// Z PROBE
zProbePin = Z_PROBE_PIN;
zProbeModulationPin = Z_PROBE_MOD_PIN;
zProbeAdcChannel = PinToAdcChannel(zProbePin);
InitZProbe();
// AXES
axisMaxima = AXIS_MAXIMA;
axisMinima = AXIS_MINIMA;
homeFeedrates = HOME_FEEDRATES;
headOffsets = HEAD_OFFSETS;
// HEATERS - Bed is assumed to be the first
tempSensePins = TEMP_SENSE_PINS;
heatOnPins = HEAT_ON_PINS;
heatSampleTime = HEAT_SAMPLE_TIME;
standbyTemperatures = STANDBY_TEMPERATURES;
activeTemperatures = ACTIVE_TEMPERATURES;
coolingFanPin = COOLING_FAN_PIN;
webDir = WEB_DIR;
gcodeDir = GCODE_DIR;
tempDir = TEMP_DIR;
for (size_t i = 0; i < DRIVES; i++)
{
if (stepPins[i] >= 0)
{
if (i > Z_AXIS)
pinModeNonDue(stepPins[i], OUTPUT);
else
pinMode(stepPins[i], OUTPUT);
}
if (directionPins[i] >= 0)
{
if (i > Z_AXIS)
pinModeNonDue(directionPins[i], OUTPUT);
else
pinMode(directionPins[i], OUTPUT);
}
if (enablePins[i] >= 0)
{
if (i >= Z_AXIS)
pinModeNonDue(enablePins[i], OUTPUT);
else
pinMode(enablePins[i], OUTPUT);
}
Disable(i);
driveEnabled[i] = false;
}
for (size_t i = 0; i < AXES; i++)
{
if (lowStopPins[i] >= 0)
{
pinMode(lowStopPins[i], INPUT);
digitalWrite(lowStopPins[i], HIGH); // Turn on pullup
}
if (highStopPins[i] >= 0)
{
pinMode(highStopPins[i], INPUT);
digitalWrite(highStopPins[i], HIGH); // Turn on pullup
}
}
for (size_t i = 0; i < HEATERS; i++)
{
if (heatOnPins[i] >= 0)
{
if (i == 0) // heater 0 (bed heater) is a standard Arduino PWM pin
{
pinMode(heatOnPins[i], OUTPUT);
}
else
{
pinModeNonDue(heatOnPins[i], OUTPUT);
}
}
thermistorFilters[i].Init();
heaterAdcChannels[i] = PinToAdcChannel(tempSensePins[i]);
// Calculate and store the ADC average sum that corresponds to an overheat condition, so that we can check is quickly in the tick ISR
float thermistorOverheatResistance = nvData.pidParams[i].GetRInf()
* exp(-nvData.pidParams[i].GetBeta() / (BAD_HIGH_TEMPERATURE - ABS_ZERO));
float thermistorOverheatAdcValue = (adRangeReal + 1) * thermistorOverheatResistance
/ (thermistorOverheatResistance + nvData.pidParams[i].thermistorSeriesR);
thermistorOverheatSums[i] = (uint32_t) (thermistorOverheatAdcValue + 0.9) * numThermistorReadingsAveraged;
}
if (coolingFanPin >= 0)
{
pinMode(coolingFanPin, OUTPUT);
analogWrite(coolingFanPin, (HEAT_ON == 0) ? 255 : 0); // turn auxiliary cooling fan off
}
InitialiseInterrupts();
addToTime = 0.0;
lastTimeCall = 0;
lastTime = Time();
longWait = lastTime;
}
void Platform::InitZProbe()
{
zProbeOnFilter.Init();
zProbeOffFilter.Init();
if (nvData.zProbeType == 1 || nvData.zProbeType == 2)
{
pinMode(zProbeModulationPin, OUTPUT);
digitalWrite(zProbeModulationPin, HIGH); // enable the IR LED
SetZProbing(false);
}
else if (nvData.zProbeType == 3)
{
pinMode(zProbeModulationPin, OUTPUT);
digitalWrite(zProbeModulationPin, LOW); // enable the ultrasonic sensor
SetZProbing(false);
}
}
int Platform::GetRawZHeight() const
{
return (nvData.zProbeType != 0) ? analogRead(zProbePin) : 0;
}
// Return the Z probe data.
// The ADC readings are 12 bits, so we convert them to 10-bit readings for compatibility with the old firmware.
int Platform::ZProbe()
{
if (zProbeOnFilter.IsValid() && zProbeOffFilter.IsValid())
{
switch (nvData.zProbeType)
{
case 1:
case 3:
// Simple IR sensor, or direct-mode ultrasonic sensor
return (int) ((zProbeOnFilter.GetSum() + zProbeOffFilter.GetSum()) / (8 * numZProbeReadingsAveraged));
case 2:
// Modulated IR sensor. We assume that zProbeOnFilter and zprobeOffFilter average the same number of readings.
// Because of noise, it is possible to get a negative reading, so allow for this.
return (int) (((int32_t) zProbeOnFilter.GetSum() - (int32_t) zProbeOffFilter.GetSum())
/ (4 * numZProbeReadingsAveraged));
default:
break;
}
}
return 0; // Z probe not turned on or not initialised yet
}
// Return the Z probe secondary values.
int Platform::GetZProbeSecondaryValues(int& v1, int& v2)
{
if (zProbeOnFilter.IsValid() && zProbeOffFilter.IsValid())
{
switch (nvData.zProbeType)
{
case 2: // modulated IR sensor
v1 = (int) (zProbeOnFilter.GetSum() / (4 * numZProbeReadingsAveraged)); // pass back the reading with IR turned on
return 1;
default:
break;
}
}
return 0;
}
int Platform::GetZProbeType() const
{
return nvData.zProbeType;
}
float Platform::ZProbeStopHeight() const
{
switch (nvData.zProbeType)
{
case 0:
return nvData.switchZProbeParameters.GetStopHeight(GetTemperature(0));
case 1:
case 2:
return nvData.irZProbeParameters.GetStopHeight(GetTemperature(0));
case 3:
return nvData.ultrasonicZProbeParameters.GetStopHeight(GetTemperature(0));
default:
return 0;
}
}
void Platform::SetZProbeType(int pt)
{
int newZProbeType = (pt >= 0 && pt <= 3) ? pt : 0;
if (newZProbeType != nvData.zProbeType)
{
nvData.zProbeType = newZProbeType;
WriteNvData();
}
InitZProbe();
}
bool Platform::GetZProbeParameters(struct ZProbeParameters& params) const
{
switch (nvData.zProbeType)
{
case 0:
params = nvData.switchZProbeParameters;
return true;
case 1:
case 2:
params = nvData.irZProbeParameters;
return true;
case 3:
params = nvData.ultrasonicZProbeParameters;
return true;
default:
return false;
}
}
bool Platform::SetZProbeParameters(const struct ZProbeParameters& params)
{
switch (nvData.zProbeType)
{
case 0:
if (nvData.switchZProbeParameters != params)
{
nvData.switchZProbeParameters = params;
WriteNvData();
}
return true;
case 1:
case 2:
if (nvData.irZProbeParameters != params)
{
nvData.irZProbeParameters = params;
WriteNvData();
}
return true;
case 3:
if (nvData.ultrasonicZProbeParameters != params)
{
nvData.ultrasonicZProbeParameters = params;
WriteNvData();
}
return true;
default:
return false;
}
}
// Return true if we must home X and Y before we home Z (i.e. we are using a bed probe)
bool Platform::MustHomeXYBeforeZ() const
{
return nvData.zProbeType != 0;
}
void Platform::WriteNvData()
{
DueFlashStorage::write(nvAddress, &nvData, sizeof(nvData));
}
void Platform::SetZProbing(bool starting)
{
}
// Note: the use of floating point time will cause the resolution to degrade over time.
// For example, 1ms time resolution will only be available for about half an hour from startup.
// Personally, I (dc42) would rather just maintain and provide the time in milliseconds in a uint32_t.
// This would wrap round after about 49 days, but that isn't difficult to handle.
float Platform::Time()
{
unsigned long now = micros();
if (now < lastTimeCall) // Has timer overflowed?
addToTime += ((float) ULONG_MAX) * TIME_FROM_REPRAP;
lastTimeCall = now;
return addToTime + TIME_FROM_REPRAP * (float) now;
}
void Platform::Exit()
{
Message(HOST_MESSAGE, "Platform class exited.\n");
active = false;
}
Compatibility Platform::Emulating() const
{
if (nvData.compatibility == reprapFirmware)
return me;
return nvData.compatibility;
}
void Platform::SetEmulating(Compatibility c)
{
if (c != me && c != reprapFirmware && c != marlin)
{
Message(HOST_MESSAGE, "Attempt to emulate unsupported firmware.\n");
return;
}
if (c == reprapFirmware)
{
c = me;
}
if (nvData.compatibility != c)
{
nvData.compatibility = c;
WriteNvData();
}
}
void Platform::UpdateNetworkAddress(byte dst[4], const byte src[4])
{
bool changed = false;
for (uint8_t i = 0; i < 4; i++)
{
if (dst[i] != src[i])
{
dst[i] = src[i];
changed = true;
}
}
if (changed)
{
WriteNvData();
}
}
void Platform::SetIPAddress(byte ip[])
{
UpdateNetworkAddress(nvData.ipAddress, ip);
}
void Platform::SetGateWay(byte gw[])
{
UpdateNetworkAddress(nvData.gateWay, gw);
}
void Platform::SetNetMask(byte nm[])
{
UpdateNetworkAddress(nvData.netMask, nm);
}
void Platform::Spin()
{
if (!active)
return;
if (debugCode == DiagnosticTest::TestSpinLockup)
{
for (;;) {}
}
line->Spin();
if (Time() - lastTime < 0.006)
return;
lastTime = Time();
ClassReport("Platform", longWait);
}
void Platform::SoftwareReset(uint16_t reason)
{
if (reason != 0)
{
if (line->inUsbWrite)
{
reason |= SoftwareResetReason::inUsbOutput; // if we are resetting because we are stuck in a Spin function, record whether we are trying to send to USB
}
}
if (reason != 0 || reason != nvData.resetReason)
{
nvData.resetReason = reason;
GetStackUsage(NULL, NULL, &nvData.neverUsedRam);
WriteNvData();
}
rstc_start_software_reset(RSTC);
for(;;) {}
}
//*****************************************************************************************************************
// Interrupts
void TC3_Handler()
{
TC_GetStatus(TC1, 0);
reprap.Interrupt();
}
void Platform::InitialiseInterrupts()
{
// Timer interrupt for stepper motors
pmc_set_writeprotect(false);
pmc_enable_periph_clk((uint32_t) TC3_IRQn);
TC_Configure(TC1, 0, TC_CMR_WAVE | TC_CMR_WAVSEL_UP_RC | TC_CMR_TCCLKS_TIMER_CLOCK4);
TC1 ->TC_CHANNEL[0].TC_IER = TC_IER_CPCS;
TC1 ->TC_CHANNEL[0].TC_IDR = ~TC_IER_CPCS;
SetInterrupt(STANDBY_INTERRUPT_RATE);
// Tick interrupt for ADC conversions
tickState = 0;
currentHeater = 0;
active = true; // this enables the tick interrupt, which keeps the watchdog happy
}
void Platform::DisableInterrupts()
{
NVIC_DisableIRQ(TC3_IRQn);
}
// Process a 1ms tick interrupt
// This function must be kept fast so as not to disturb the stepper timing, so don't do any floating point maths in here.
// This is what we need to do:
// 0. Kick the watchdog.
// 1. Kick off a new ADC conversion.
// 2. Fetch and process the result of the last ADC conversion.
// 3a. If the last ADC conversion was for the Z probe, toggle the modulation output if using a modulated IR sensor.
// 3b. If the last ADC reading was a thermistor reading, check for an over-temperature situation and turn off the heater if necessary.
// We do this here because the usual polling loop sometimes gets stuck trying to send data to the USB port.
//#define TIME_TICK_ISR 1 // define this to store the tick ISR time in errorCodeBits
void Platform::Tick()
{
#ifdef TIME_TICK_ISR
uint32_t now = micros();
#endif
switch (tickState)
{
case 1: // last conversion started was a thermistor
case 3:
{
ThermistorAveragingFilter& currentFilter = const_cast<ThermistorAveragingFilter&>(thermistorFilters[currentHeater]);
currentFilter.ProcessReading(GetAdcReading(heaterAdcChannels[currentHeater]));
StartAdcConversion(zProbeAdcChannel);
if (currentFilter.IsValid())
{
uint32_t sum = currentFilter.GetSum();
if (sum < thermistorOverheatSums[currentHeater] || sum >= adDisconnectedReal * numThermistorReadingsAveraged)
{
// We have an over-temperature or bad reading from this thermistor, so turn off the heater
// NB - the SetHeater function we call does floating point maths, but this is an exceptional situation so we allow it
SetHeater(currentHeater, 0.0);
errorCodeBits |= ErrorBadTemp;
}
}
++currentHeater;
if (currentHeater == HEATERS)
{
currentHeater = 0;
}
}
++tickState;
break;
case 2: // last conversion started was the Z probe, with IR LED on
const_cast<ZProbeAveragingFilter&>(zProbeOnFilter).ProcessReading(GetAdcReading(zProbeAdcChannel));
StartAdcConversion(heaterAdcChannels[currentHeater]); // read a thermistor
if (nvData.zProbeType == 2) // if using a modulated IR sensor
{
digitalWrite(Z_PROBE_MOD_PIN, LOW); // turn off the IR emitter
}
++tickState;
break;
case 4: // last conversion started was the Z probe, with IR LED off if modulation is enabled
const_cast<ZProbeAveragingFilter&>(zProbeOffFilter).ProcessReading(GetAdcReading(zProbeAdcChannel));
// no break
case 0: // this is the state after initialisation, no conversion has been started
default:
StartAdcConversion(heaterAdcChannels[currentHeater]); // read a thermistor
if (nvData.zProbeType == 2) // if using a modulated IR sensor
{
digitalWrite(Z_PROBE_MOD_PIN, HIGH); // turn on the IR emitter
}
tickState = 1;
break;
}
#ifdef TIME_TICK_ISR
uint32_t now2 = micros();
if (now2 - now > errorCodeBits)
{
errorCodeBits = now2 - now;
}
#endif
}
/*static*/uint16_t Platform::GetAdcReading(adc_channel_num_t chan)
{
uint16_t rslt = (uint16_t) adc_get_channel_value(ADC, chan);
adc_disable_channel(ADC, chan);
return rslt;
}
/*static*/void Platform::StartAdcConversion(adc_channel_num_t chan)
{
adc_enable_channel(ADC, chan);
adc_start(ADC );
}
// Convert an Arduino Due pin number to the corresponding ADC channel number
/*static*/adc_channel_num_t Platform::PinToAdcChannel(int pin)
{
if (pin < A0)
{
pin += A0;
}
return (adc_channel_num_t) (int) g_APinDescription[pin].ulADCChannelNumber;
}
//*************************************************************************************************
void Platform::Diagnostics()
{
Message(HOST_MESSAGE, "Platform Diagnostics:\n");
}
void Platform::SetDebug(int d)
{
switch (d)
{
case DiagnosticTest::TestWatchdog:
SysTick ->CTRL &= ~(SysTick_CTRL_TICKINT_Msk); // disable the system tick interrupt so that we get a watchdog timeout reset
break;
case DiagnosticTest::TestSpinLockup:
debugCode = d; // tell the Spin function to loop
break;
default:
break;
}
}
// Return the stack usage and amount of memory that has never been used, in bytes
void Platform::GetStackUsage(size_t* currentStack, size_t* maxStack, size_t* neverUsed) const
{
const char *ramend = (const char *) 0x20088000;
register const char * stack_ptr asm ("sp");
const char *heapend = sbrk(0);
const char* stack_lwm = heapend;
while (stack_lwm < stack_ptr && *stack_lwm == memPattern)
{
++stack_lwm;
}
if (currentStack) { *currentStack = ramend - stack_ptr; }
if (maxStack) { *maxStack = ramend - stack_lwm; }
if (neverUsed) { *neverUsed = stack_lwm - heapend; }
}
// Print memory stats and error codes to USB and copy them to the current webserver reply
void Platform::PrintMemoryUsage()
{
const char *ramstart = (char *) 0x20070000;
const struct mallinfo mi = mallinfo();
Message(HOST_MESSAGE, "\n");
Message(HOST_MESSAGE, "Memory usage:\n\n");
snprintf(scratchString, STRING_LENGTH, "Program static ram used: %d\n", &_end - ramstart);
reprap.GetWebserver()->HandleReply(scratchString, false);
Message(HOST_MESSAGE, scratchString);
snprintf(scratchString, STRING_LENGTH, "Dynamic ram used: %d\n", mi.uordblks);
reprap.GetWebserver()->AppendReply(scratchString);
Message(HOST_MESSAGE, scratchString);
snprintf(scratchString, STRING_LENGTH, "Recycled dynamic ram: %d\n", mi.fordblks);
reprap.GetWebserver()->AppendReply(scratchString);
Message(HOST_MESSAGE, scratchString);
size_t currentStack, maxStack, neverUsed;
GetStackUsage(&currentStack, &maxStack, &neverUsed);
snprintf(scratchString, STRING_LENGTH, "Current stack ram used: %d\n", currentStack);
reprap.GetWebserver()->AppendReply(scratchString);
Message(HOST_MESSAGE, scratchString);
snprintf(scratchString, STRING_LENGTH, "Maximum stack ram used: %d\n", maxStack);
reprap.GetWebserver()->AppendReply(scratchString);
Message(HOST_MESSAGE, scratchString);
snprintf(scratchString, STRING_LENGTH, "Never used ram: %d\n", neverUsed);
reprap.GetWebserver()->AppendReply(scratchString);
Message(HOST_MESSAGE, scratchString);
// Show the up time and reason for the last reset
const uint32_t now = (uint32_t)Time(); // get up time in seconds
const char* resetReasons[8] = { "power up", "backup", "watchdog", "software", "external", "?", "?", "?" };
snprintf(scratchString, STRING_LENGTH, "Last reset %02d:%02d:%02d ago, cause: %s\n",
(unsigned int)(now/3600), (unsigned int)((now % 3600)/60), (unsigned int)(now % 60),
resetReasons[(REG_RSTC_SR & RSTC_SR_RSTTYP_Msk) >> RSTC_SR_RSTTYP_Pos]);
reprap.GetWebserver()->AppendReply(scratchString);
Message(HOST_MESSAGE, scratchString);
// Show the error code stored at the last software reset
snprintf(scratchString, STRING_LENGTH, "Last software reset code & available RAM: 0x%04x, %u\n", nvData.resetReason, nvData.neverUsedRam);
reprap.GetWebserver()->AppendReply(scratchString);
Message(HOST_MESSAGE, scratchString);
// Show the current error codes
snprintf(scratchString, STRING_LENGTH, "Error status: %u\n", errorCodeBits);
reprap.GetWebserver()->AppendReply(scratchString);
Message(HOST_MESSAGE, scratchString);
// Show the current probe position heights
strncpy(scratchString, "Bed probe heights:", STRING_LENGTH);
for (size_t i = 0; i < NUMBER_OF_PROBE_POINTS; ++i)
{
sncatf(scratchString, STRING_LENGTH, " %.3f", reprap.GetMove()->zBedProbePoint(i));
}
strncat(scratchString, "\n", STRING_LENGTH);
reprap.GetWebserver()->AppendReply(scratchString);
Message(HOST_MESSAGE, scratchString);
// Show the number of free entries in the file table
unsigned int numFreeFiles = 0;
for (int8_t i = 0; i < MAX_FILES; i++)
{
if (!files[i]->inUse)
{
++numFreeFiles;
}
}
snprintf(scratchString, STRING_LENGTH, "Free file entries: %u\n", numFreeFiles);
reprap.GetWebserver()->AppendReply(scratchString);
Message(HOST_MESSAGE, scratchString);
}
void Platform::ClassReport(char* className, float &lastTime)
{
if (!reprap.Debug())
return;
if (Time() - lastTime < LONG_TIME)
return;
lastTime = Time();
snprintf(scratchString, STRING_LENGTH, "Class %s spinning.\n", className);
Message(HOST_MESSAGE, scratchString);
}
//===========================================================================
//=============================Thermal Settings ============================
//===========================================================================
// See http://en.wikipedia.org/wiki/Thermistor#B_or_.CE.B2_parameter_equation
// BETA is the B value
// RS is the value of the series resistor in ohms
// R_INF is R0.exp(-BETA/T0), where R0 is the thermistor resistance at T0 (T0 is in kelvin)
// Normally T0 is 298.15K (25 C). If you write that expression in brackets in the #define the compiler
// should compute it for you (i.e. it won't need to be calculated at run time).
// If the A->D converter has a range of 0..1023 and the measured voltage is V (between 0 and 1023)
// then the thermistor resistance, R = V.RS/(1024 - V)
// and the temperature, T = BETA/ln(R/R_INF)
// To get degrees celsius (instead of kelvin) add -273.15 to T
// Result is in degrees celsius
float Platform::GetTemperature(size_t heater) const
{
int rawTemp = GetRawTemperature(heater);
// If the ADC reading is N then for an ideal ADC, the input voltage is at least N/(AD_RANGE + 1) and less than (N + 1)/(AD_RANGE + 1), times the analog reference.
// So we add 0.5 to to the reading to get a better estimate of the input.
float reading = (float) rawTemp + 0.5;
// Recognise the special case of thermistor disconnected.
// For some ADCs, the high-end offset is negative, meaning that the ADC never returns a high enough value. We need to allow for this here.
const PidParameters& p = nvData.pidParams[heater];
if (p.adcHighOffset < 0.0)
{
rawTemp -= (int) p.adcHighOffset;
}
if (rawTemp >= adDisconnectedVirtual)
{
return ABS_ZERO; // thermistor is disconnected
}
// Correct for the low and high ADC offsets
reading -= p.adcLowOffset;
reading *= (adRangeVirtual + 1) / (adRangeVirtual + 1 + p.adcHighOffset - p.adcLowOffset);
float resistance = reading * p.thermistorSeriesR / ((adRangeVirtual + 1) - reading);
return (resistance <= p.GetRInf()) ? 2000.0 // thermistor short circuit, return a high temperature
: ABS_ZERO + p.GetBeta() / log(resistance / p.GetRInf());
}
void Platform::SetPidParameters(size_t heater, const PidParameters& params)
{
if (heater < HEATERS && params != nvData.pidParams[heater])
{
nvData.pidParams[heater] = params;
WriteNvData();
}
}
const PidParameters& Platform::GetPidParameters(size_t heater)
{
return nvData.pidParams[heater];
}
// power is a fraction in [0,1]
void Platform::SetHeater(size_t heater, const float& power)
{
if (heatOnPins[heater] < 0)
return;
byte p = (byte) (255.0 * fmin(1.0, fmax(0.0, power)));
if (HEAT_ON == 0)
p = 255 - p;
if (heater == 0)
analogWrite(heatOnPins[heater], p);
else
analogWriteNonDue(heatOnPins[heater], p);
}
EndStopHit Platform::Stopped(int8_t drive)
{
if (nvData.zProbeType > 0)
{ // Z probe is used for both X and Z.
if (drive != Y_AXIS)
{
int zProbeVal = ZProbe();
int zProbeADValue =
(nvData.zProbeType == 3) ?
nvData.ultrasonicZProbeParameters.adcValue : nvData.irZProbeParameters.adcValue;
if (zProbeVal >= zProbeADValue)
return lowHit;
else if (zProbeVal * 10 >= zProbeADValue * 9) // if we are at/above 90% of the target value
return lowNear;
else
return noStop;
}
}
if (lowStopPins[drive] >= 0)
{
if (digitalRead(lowStopPins[drive]) == ENDSTOP_HIT)
return lowHit;
}
if (highStopPins[drive] >= 0)
{
if (digitalRead(highStopPins[drive]) == ENDSTOP_HIT)
return highHit;
}
return noStop;
}
void Platform::SetDirection(byte drive, bool direction)
{
if(directionPins[drive] < 0)
return;
if(drive == AXES)
digitalWriteNonDue(directionPins[drive], direction);
else
digitalWrite(directionPins[drive], direction);
}
void Platform::Disable(byte drive)
{
if(enablePins[drive] < 0)
return;
if(drive >= Z_AXIS)
digitalWriteNonDue(enablePins[drive], DISABLE);
else
digitalWrite(enablePins[drive], DISABLE);
driveEnabled[drive] = false;
}
void Platform::Step(byte drive)
{
if(stepPins[drive] < 0)
return;
if(!driveEnabled[drive] && enablePins[drive] >= 0)
{
if(drive >= Z_AXIS)
digitalWriteNonDue(enablePins[drive], ENABLE);
else
digitalWrite(enablePins[drive], ENABLE);
driveEnabled[drive] = true;
}
if(drive == AXES)
{
digitalWriteNonDue(stepPins[drive], 0);
digitalWriteNonDue(stepPins[drive], 1);
} else
{
digitalWrite(stepPins[drive], 0);
digitalWrite(stepPins[drive], 1);
}
}
// current is in mA
void Platform::SetMotorCurrent(byte drive, float current)
{
unsigned short pot = (unsigned short)(0.256*current*8.0*senseResistor/maxStepperDigipotVoltage);
// Message(HOST_MESSAGE, "Set pot to: ");
// snprintf(scratchString, STRING_LENGTH, "%d", pot);
// Message(HOST_MESSAGE, scratchString);
// Message(HOST_MESSAGE, "\n");
mcp.setNonVolatileWiper(potWipes[drive], pot);
mcp.setVolatileWiper(potWipes[drive], pot);
}
//Changed to be compatible with existing gcode norms
// M106 S0 = fully off M106 S255 = fully on
void Platform::CoolingFan(float speed)
{
if(coolingFanPin > 0)
{
// The cooling fan output pin gets inverted if HEAT_ON == 0
analogWriteNonDue(coolingFanPin, (uint32_t)( (HEAT_ON == 0) ? (255.0 - speed) : speed));
}
}
// Interrupts
void Platform::SetInterrupt(float s) // Seconds
{
if (s <= 0.0)
{
//NVIC_DisableIRQ(TC3_IRQn);
Message(HOST_MESSAGE, "Negative interrupt!\n");
s = STANDBY_INTERRUPT_RATE;
}
uint32_t rc = (uint32_t)( (((long)(TIME_TO_REPRAP*s))*84l)/128l );
TC_SetRA(TC1, 0, rc/2); //50% high, 50% low
TC_SetRC(TC1, 0, rc);
TC_Start(TC1, 0);
NVIC_EnableIRQ(TC3_IRQn);
}
//-----------------------------------------------------------------------------------------------------
FileStore* Platform::GetFileStore(const char* directory, const char* fileName, bool write)
{
if (!fileStructureInitialised)
return NULL;
for (int i = 0; i < MAX_FILES; i++)
{
if (!files[i]->inUse)
{
files[i]->inUse = true;
if (files[i]->Open(directory, fileName, write))
{
return files[i];
}
else
{
files[i]->inUse = false;
return NULL;
}
}
}
Message(HOST_MESSAGE, "Max open file count exceeded.\n");
return NULL;
}
MassStorage* Platform::GetMassStorage()
{
return massStorage;
}
void Platform::Message(char type, const char* message)
{
switch (type)
{
case FLASH_LED:
// Message that is to flash an LED; the next two bytes define
// the frequency and M/S ratio.
break;
case DISPLAY_MESSAGE:
// Message that is to appear on a local display; \f and \n should be supported.
case HOST_MESSAGE:
default:
// FileStore* m = GetFileStore(GetWebDir(), MESSAGE_FILE, true);
// if(m != NULL)
// {
// m->GoToEnd();
// m->Write(message);
// m->Close();
// } else
// line->Write("Can't open message file.\n");
for (uint8_t i = 0; i < messageIndent; i++)
{
line->Write(' ', type == DEBUG_MESSAGE);
}
line->Write(message, type == DEBUG_MESSAGE);
}
}
void Platform::SetAtxPower(bool on)
{
digitalWrite(atxPowerPin, (on) ? HIGH : LOW);
}
/*********************************************************************************
Files & Communication
*/
MassStorage::MassStorage(Platform* p)
{
platform = p;
}
void MassStorage::Init()
{
hsmciPinsinit();
// Initialize SD MMC stack
sd_mmc_init();
delay(20);
int sdPresentCount = 0;
while ((CTRL_NO_PRESENT == sd_mmc_check(0)) && (sdPresentCount < 5))
{
//platform->Message(HOST_MESSAGE, "Please plug in the SD card.\n");
//delay(1000);
sdPresentCount++;
}
if (sdPresentCount >= 5)
{
platform->Message(HOST_MESSAGE, "Can't find the SD card.\n");
return;
}
//print card info
// SerialUSB.print("sd_mmc_card->capacity: ");
// SerialUSB.print(sd_mmc_get_capacity(0));
// SerialUSB.print(" bytes\n");
// SerialUSB.print("sd_mmc_card->clock: ");
// SerialUSB.print(sd_mmc_get_bus_clock(0));
// SerialUSB.print(" Hz\n");
// SerialUSB.print("sd_mmc_card->bus_width: ");
// SerialUSB.println(sd_mmc_get_bus_width(0));
memset(&fileSystem, 0, sizeof(FATFS));
//f_mount (LUN_ID_SD_MMC_0_MEM, NULL);
//int mounted = f_mount(LUN_ID_SD_MMC_0_MEM, &fileSystem);
int mounted = f_mount(0, &fileSystem);
if (mounted != FR_OK)
{
platform->Message(HOST_MESSAGE, "Can't mount filesystem 0: code ");
snprintf(scratchString, STRING_LENGTH, "%d", mounted);
platform->Message(HOST_MESSAGE, scratchString);
platform->Message(HOST_MESSAGE, "\n");
}
}
const char* MassStorage::CombineName(const char* directory, const char* fileName)
{
int out = 0;
int in = 0;
// scratchString[out] = '/';
// out++;
if (directory != NULL)
{
//if(directory[in] == '/')
// in++;
while (directory[in] != 0 && directory[in] != '\n') // && directory[in] != '/')
{
scratchString[out] = directory[in];
in++;
out++;
if (out >= STRING_LENGTH)
{
platform->Message(HOST_MESSAGE, "CombineName() buffer overflow.");
out = 0;
}
}
}
//scratchString[out] = '/';
// out++;
in = 0;
while (fileName[in] != 0 && fileName[in] != '\n') // && fileName[in] != '/')
{
scratchString[out] = fileName[in];
in++;
out++;
if (out >= STRING_LENGTH)
{
platform->Message(HOST_MESSAGE, "CombineName() buffer overflow.");
out = 0;
}
}
scratchString[out] = 0;
return scratchString;
}
// List the flat files in a directory. No sub-directories or recursion.
const char* MassStorage::FileList(const char* directory, bool fromLine)
{
char fileListBracket = FILE_LIST_BRACKET;
char fileListSeparator = FILE_LIST_SEPARATOR;
if (fromLine)
{
if (platform->Emulating() == marlin)
{
fileListBracket = 0;
fileListSeparator = '\n';
}
}
TCHAR loc[64];
// Remove the trailing '/' from the directory name
size_t len = strnlen(directory, ARRAY_SIZE(loc));
if (len == 0)
{
loc[0] = 0;
}
else
{
strncpy(loc, directory, len - 1);
loc[len - 1] = 0;
}
// if(reprap.Debug()) {
// platform->Message(HOST_MESSAGE, "Opening: ");
// platform->Message(HOST_MESSAGE, loc);
// platform->Message(HOST_MESSAGE, "\n");
// }
DIR dir;
FRESULT res = f_opendir(&dir, loc);
if (res == FR_OK)
{
// if(reprap.Debug()) {
// platform->Message(HOST_MESSAGE, "Directory open\n");
// }
size_t p = 0;
unsigned int foundFiles = 0;
f_readdir(&dir, 0);
FILINFO entry;
TCHAR loclfname[255]; // this buffer is used to hold the directory name, and later to hold the long filename
entry.lfname = loclfname;
entry.lfsize = ARRAY_SIZE(loclfname);
// When we reach, the end of the directory, the function we are about to call suppresses the "end of directory" error code and goes on returning FR_OK.
// So we need to check the sector number before the call. What idiot wrote that function???
while (dir.sect != 0 && f_readdir(&dir, &entry) == FR_OK)
{
const TCHAR *fp = (loclfname[0] == 0) ? entry.fname : loclfname;
if (*fp != 0)
{
size_t lastFileStart = p;
if (fileListBracket)
{
fileList[p++] = fileListBracket;
}
while (*fp != 0 && p <= FILE_LIST_LENGTH - 4) // leave space for this character, bracket, separator, bracket
{
fileList[p++] = *fp++;
}
if (*fp != 0)
{
// Not enough space to store this filename
p = lastFileStart;
break;
}
foundFiles++;
if (fileListBracket)
{
fileList[p++] = fileListBracket;
}
fileList[p++] = fileListSeparator;
}
}
if (foundFiles == 0)
return "NONE";
fileList[--p] = 0; // Get rid of the last separator
return fileList;
}
return "";
}
// Delete a file
bool MassStorage::Delete(const char* directory, const char* fileName)
{
const char* location = platform->GetMassStorage()->CombineName(directory, fileName);
if (f_unlink(location) != FR_OK)
{
platform->Message(HOST_MESSAGE, "Can't delete file ");
platform->Message(HOST_MESSAGE, location);
platform->Message(HOST_MESSAGE, "\n");
return false;
}
return true;
}
//------------------------------------------------------------------------------------------------
FileStore::FileStore(Platform* p) : platform(p)
{
}
void FileStore::Init()
{
bufferPointer = 0;
inUse = false;
writing = false;
lastBufferEntry = 0;
openCount = 0;
}
// Open a local file (for example on an SD card).
// This is protected - only Platform can access it.
bool FileStore::Open(const char* directory, const char* fileName, bool write)
{
const char* location = platform->GetMassStorage()->CombineName(directory, fileName);
writing = write;
lastBufferEntry = FILE_BUF_LEN - 1;
FRESULT openReturn;
if (writing)
{
openReturn = f_open(&file, location, FA_CREATE_ALWAYS | FA_WRITE);
if (openReturn != FR_OK)
{
platform->Message(HOST_MESSAGE, "Can't open ");
platform->Message(HOST_MESSAGE, location);
platform->Message(HOST_MESSAGE, " to write to. Error code: ");
snprintf(scratchString, STRING_LENGTH, "%d", openReturn);
platform->Message(HOST_MESSAGE, scratchString);
platform->Message(HOST_MESSAGE, "\n");
return false;
}
bufferPointer = 0;
}
else
{
openReturn = f_open(&file, location, FA_OPEN_EXISTING | FA_READ);
if (openReturn != FR_OK)
{
platform->Message(HOST_MESSAGE, "Can't open ");
platform->Message(HOST_MESSAGE, location);
platform->Message(HOST_MESSAGE, " to read from. Error code: ");
snprintf(scratchString, STRING_LENGTH, "%d", openReturn);
platform->Message(HOST_MESSAGE, scratchString);
platform->Message(HOST_MESSAGE, "\n");
return false;
}
bufferPointer = FILE_BUF_LEN;
}
inUse = true;
openCount = 1;
return true;
}
void FileStore::Duplicate()
{
if (!inUse)
{
platform->Message(HOST_MESSAGE, "Attempt to dup a non-open file.\n");
return;
}
++openCount;
}
bool FileStore::Close()
{
if (!inUse)
{
platform->Message(HOST_MESSAGE, "Attempt to close a non-open file.\n");
return false;
}
--openCount;
if (openCount != 0)
{
return true;
}
if (writing)
{
WriteBuffer();
}
FRESULT fr = f_close(&file);
inUse = false;
writing = false;
lastBufferEntry = 0;
return fr == FR_OK;
}
bool FileStore::Seek(unsigned long pos)
{
if (!inUse)
{
platform->Message(HOST_MESSAGE, "Attempt to seek on a non-open file.\n");
return false;
}
if (writing)
{
WriteBuffer();
}
FRESULT fr = f_lseek(&file, pos);
bufferPointer = (writing) ? 0 : FILE_BUF_LEN;
return fr == FR_OK;
}
bool FileStore::GoToEnd()
{
return Seek(Length());
}
unsigned long FileStore::Length()
{
if (!inUse)
{
platform->Message(HOST_MESSAGE, "Attempt to size non-open file.\n");
return 0;
}
return file.fsize;
}
int8_t FileStore::Status()
{
if (!inUse)
return nothing;
if (lastBufferEntry == FILE_BUF_LEN)
return byteAvailable;
if (bufferPointer < lastBufferEntry)
return byteAvailable;
return nothing;
}
void FileStore::ReadBuffer()
{
FRESULT readStatus = f_read(&file, buf, FILE_BUF_LEN, &lastBufferEntry); // Read a chunk of file
if (readStatus)
{
platform->Message(HOST_MESSAGE, "Error reading file.\n");
}
bufferPointer = 0;
}
// Single character read via the buffer
bool FileStore::Read(char& b)
{
if (!inUse)
{
platform->Message(HOST_MESSAGE, "Attempt to read from a non-open file.\n");
return false;
}
if (bufferPointer >= FILE_BUF_LEN)
{
ReadBuffer();
}
if (bufferPointer >= lastBufferEntry)
{
b = 0; // Good idea?
return false;
}
b = (char) buf[bufferPointer];
bufferPointer++;
return true;
}
// Block read, doesn't use the buffer
int FileStore::Read(char* extBuf, unsigned int nBytes)
{
if (!inUse)
{
platform->Message(HOST_MESSAGE, "Attempt to read from a non-open file.\n");
return -1;
}
bufferPointer = FILE_BUF_LEN; // invalidate the buffer
UINT bytesRead;
FRESULT readStatus = f_read(&file, extBuf, nBytes, &bytesRead);
if (readStatus)
{
platform->Message(HOST_MESSAGE, "Error reading file.\n");
return -1;
}
return (int)bytesRead;
}
void FileStore::WriteBuffer()
{
FRESULT writeStatus = f_write(&file, buf, bufferPointer, &lastBufferEntry);
if ((writeStatus != FR_OK) || (lastBufferEntry != bufferPointer))
{
platform->Message(HOST_MESSAGE, "Error writing file. Disc may be full.\n");
}
bufferPointer = 0;
}
void FileStore::Write(char b)
{
if (!inUse)
{
platform->Message(HOST_MESSAGE, "Attempt to write byte to a non-open file.\n");
return;
}
buf[bufferPointer] = b;
bufferPointer++;
if (bufferPointer >= FILE_BUF_LEN)
WriteBuffer();
}
void FileStore::Write(const char* b)
{
if (!inUse)
{
platform->Message(HOST_MESSAGE, "Attempt to write string to a non-open file.\n");
return;
}
int i = 0;
while (b[i])
Write(b[i++]);
}
//***************************************************************************************************
// Serial/USB class
Line::Line()
{
}
int8_t Line::Status() const
{
// if(alternateInput != NULL)
// return alternateInput->Status();
return inputNumChars == 0 ? nothing : byteAvailable;
}
int Line::Read(char& b)
{
// if(alternateInput != NULL)
// return alternateInput->Read(b);
if (inputNumChars == 0) return 0;
b = inBuffer[inputGetIndex];
inputGetIndex = (inputGetIndex + 1) % lineInBufsize;
--inputNumChars;
return 1;
}
void Line::Init()
{
inputGetIndex = 0;
inputNumChars = 0;
outputGetIndex = 0;
outputNumChars = 0;
ignoringOutputLine = false;
SerialUSB.begin(BAUD_RATE);
inUsbWrite = false;
}
void Line::Spin()
{
// Read the serial data in blocks to avoid excessive flow control
if (inputNumChars <= lineInBufsize / 2)
{
int16_t target = SerialUSB.available() + (int16_t) inputNumChars;
if (target > lineInBufsize)
{
target = lineInBufsize;
}
while ((int16_t) inputNumChars < target)
{
int incomingByte = SerialUSB.read();
if (incomingByte < 0)
break;
inBuffer[(inputGetIndex + inputNumChars) % lineInBufsize] = (char) incomingByte;
++inputNumChars;
}
}
TryFlushOutput();
}
// Write a character to USB.
// If 'block' is true then we don't return until we have either written it to the USB port of put it in the buffer.
// Otherwise, if the buffer is full then we append ".\n" to the end of it, return immediately and ignore the rest
// of the data we are asked to print until we get a new line.
void Line::Write(char b, bool block)
{
if (block)
{
// We failed to print an unimportant message that (unusually) didn't finish in a newline
ignoringOutputLine = false;
}
if (ignoringOutputLine)
{
// We have already failed to write some characters of this message line, so don't write any of it.
// But try to start sending again after this line finishes.
if (b == '\n')
{
ignoringOutputLine = false;
}
TryFlushOutput(); // this may help free things up
}
else
{
for(;;)
{
TryFlushOutput();
if (outputNumChars == 0 && SerialUSB.canWrite() != 0)
{
// We can write the character directly into the USB output buffer
++inUsbWrite;
SerialUSB.write(b);
--inUsbWrite;
break;
}
else if ( outputNumChars + 2 < lineOutBufSize // save 2 spaces in the output buffer
|| (outputNumChars < lineOutBufSize && (block || b == '\n')) //...unless doing blocking output or writing newline
)
{
outBuffer[(outputGetIndex + outputNumChars) % lineOutBufSize] = b;
++outputNumChars;
break;
}
else if (!block)
{
if (outputNumChars + 2 == lineOutBufSize)
{
// We still have our 2 free characters, so append ".\n" to the line to indicate it was incomplete
outBuffer[(outputGetIndex + outputNumChars) % lineOutBufSize] = '.';
++outputNumChars;
outBuffer[(outputGetIndex + outputNumChars) % lineOutBufSize] = '\n';
++outputNumChars;
}
else
{
// As we don't have 2 spare characters in the buffer, we can't have written any of the current line.
// So ignore the whole line.
}
ignoringOutputLine = true;
break;
}
}
}
// else discard the character
}
void Line::Write(const char* b, bool block)
{
while (*b)
{
Write(*b++, block);
}
}
void Line::TryFlushOutput()
{
while (outputNumChars != 0 && SerialUSB.canWrite() != 0)
{
++inUsbWrite;
SerialUSB.write(outBuffer[outputGetIndex]);
--inUsbWrite;
outputGetIndex = (outputGetIndex + 1) % lineOutBufSize;
--outputNumChars;
}
}
// End