
Added X and Y z-probe offsets to G31 command Reworked G31 and G32 to do less work in the step ISR and to support Z probe on delta printers Z probe modulation pin is now selected using M558 R parameter instead of probe type
442 lines
18 KiB
C++
442 lines
18 KiB
C++
/*
|
|
* DriveMovement.cpp
|
|
*
|
|
* Created on: 17 Jan 2015
|
|
* Author: David
|
|
*/
|
|
|
|
#include "RepRapFirmware.h"
|
|
|
|
// Prepare this DM for a Cartesian axis move
|
|
void DriveMovement::PrepareCartesianAxis(const DDA& dda, const PrepParams& params, size_t drive)
|
|
{
|
|
const float stepsPerMm = reprap.GetPlatform()->DriveStepsPerUnit(drive) * fabs(dda.directionVector[drive]);
|
|
mp.cart.twoCsquaredTimesMmPerStepDivA = (uint64_t)(((float)DDA::stepClockRate * (float)DDA::stepClockRate)/(stepsPerMm * dda.acceleration)) * 2;
|
|
|
|
// Acceleration phase parameters
|
|
mp.cart.accelStopStep = (uint32_t)(dda.accelDistance * stepsPerMm) + 1;
|
|
startSpeedTimesCdivA = params.startSpeedTimesCdivA;
|
|
#if CACHE_startSpeedTimesCdivAsquared
|
|
startSpeedTimesCdivAsquared = isquare64(startSpeedTimesCdivA);
|
|
#endif
|
|
|
|
// Constant speed phase parameters
|
|
mp.cart.mmPerStepTimesCdivtopSpeed = (uint32_t)(((float)DDA::stepClockRate * K1)/(stepsPerMm * dda.topSpeed));
|
|
accelClocksMinusAccelDistanceTimesCdivTopSpeed = params.accelClocksMinusAccelDistanceTimesCdivTopSpeed;
|
|
|
|
// Deceleration phase parameters
|
|
// First check whether there is any deceleration at all, otherwise we may get strange results because of rounding errors
|
|
if (dda.decelDistance * stepsPerMm < 0.5)
|
|
{
|
|
mp.cart.decelStartStep = totalSteps + 1;
|
|
topSpeedTimesCdivAPlusDecelStartClocks = 0;
|
|
twoDistanceToStopTimesCsquaredDivA = 0;
|
|
}
|
|
else
|
|
{
|
|
mp.cart.decelStartStep = (uint32_t)(params.decelStartDistance * stepsPerMm) + 1;
|
|
topSpeedTimesCdivAPlusDecelStartClocks = params.topSpeedTimesCdivAPlusDecelStartClocks;
|
|
const uint64_t initialDecelSpeedTimesCdivASquared = isquare64(params.topSpeedTimesCdivA);
|
|
twoDistanceToStopTimesCsquaredDivA = initialDecelSpeedTimesCdivASquared + (uint64_t)((params.decelStartDistance * (DDA::stepClockRateSquared * 2))/dda.acceleration);
|
|
}
|
|
|
|
// No reverse phase
|
|
mp.cart.reverseStartStep = totalSteps + 1;
|
|
mp.cart.fourMaxStepDistanceMinusTwoDistanceToStopTimesCsquaredDivA = 0;
|
|
}
|
|
|
|
// Prepare this DM for a Delta axis move
|
|
void DriveMovement::PrepareDeltaAxis(const DDA& dda, const PrepParams& params, size_t drive)
|
|
{
|
|
const float stepsPerMm = reprap.GetPlatform()->DriveStepsPerUnit(drive);
|
|
mp.delta.twoCsquaredTimesMmPerStepDivAK = (uint32_t)((float)DDA::stepClockRateSquared/(stepsPerMm * dda.acceleration * (K2/2)));
|
|
|
|
// Acceleration phase parameters
|
|
mp.delta.accelStopDsK = (uint32_t)(dda.accelDistance * stepsPerMm * K2);
|
|
startSpeedTimesCdivA = params.startSpeedTimesCdivA;
|
|
#if CACHE_startSpeedTimesCdivAsquared
|
|
startSpeedTimesCdivAsquared = isquare64(startSpeedTimesCdivA);
|
|
#endif
|
|
|
|
// Constant speed phase parameters
|
|
mp.delta.mmPerStepTimesCdivtopSpeedK = (uint32_t)(((float)DDA::stepClockRate * K1)/(stepsPerMm * dda.topSpeed));
|
|
accelClocksMinusAccelDistanceTimesCdivTopSpeed = params.accelClocksMinusAccelDistanceTimesCdivTopSpeed;
|
|
|
|
// Deceleration phase parameters
|
|
// First check whether there is any deceleration at all, otherwise we may get strange results because of rounding errors
|
|
if (dda.decelDistance * stepsPerMm < 0.5)
|
|
{
|
|
mp.delta.decelStartDsK = (uint32_t)(dda.totalDistance * stepsPerMm * K2) * 2; // the *2 is to make sure it is definitely high enough
|
|
topSpeedTimesCdivAPlusDecelStartClocks = 0;
|
|
twoDistanceToStopTimesCsquaredDivA = 0;
|
|
}
|
|
else
|
|
{
|
|
mp.delta.decelStartDsK = (uint32_t)(params.decelStartDistance * stepsPerMm * K2);
|
|
topSpeedTimesCdivAPlusDecelStartClocks = params.topSpeedTimesCdivAPlusDecelStartClocks;
|
|
const uint64_t initialDecelSpeedTimesCdivASquared = isquare64(params.topSpeedTimesCdivA);
|
|
twoDistanceToStopTimesCsquaredDivA = initialDecelSpeedTimesCdivASquared + (uint64_t)((params.decelStartDistance * (DDA::stepClockRateSquared * 2))/dda.acceleration);
|
|
}
|
|
}
|
|
|
|
// Prepare this DM for an extruder move
|
|
void DriveMovement::PrepareExtruder(const DDA& dda, const PrepParams& params, size_t drive)
|
|
{
|
|
const float stepsPerMm = reprap.GetPlatform()->DriveStepsPerUnit(drive) * fabs(dda.directionVector[drive]);
|
|
mp.cart.twoCsquaredTimesMmPerStepDivA = (uint64_t)(((float)DDA::stepClockRate * (float)DDA::stepClockRate)/(stepsPerMm * dda.acceleration)) * 2;
|
|
|
|
// Calculate the elasticity compensation parameter (not needed for axis movements, but we do them anyway to keep the code simple)
|
|
const float compensationTime = reprap.GetPlatform()->GetElasticComp(drive);
|
|
uint32_t compensationClocks = (uint32_t)(compensationTime * DDA::stepClockRate);
|
|
const float accelCompensationDistance = compensationTime * (dda.topSpeed - dda.startSpeed);
|
|
const float accelCompensationSteps = accelCompensationDistance * stepsPerMm;
|
|
|
|
// Calculate the net total step count to allow for compensation (may be negative)
|
|
// Note that we add totalSteps in floating point mode, to round the number of steps down consistently
|
|
int32_t netSteps = (int32_t)(((dda.endSpeed - dda.startSpeed) * compensationTime * stepsPerMm) + totalSteps);
|
|
|
|
// Acceleration phase parameters
|
|
mp.cart.accelStopStep = (uint32_t)((dda.accelDistance * stepsPerMm) + accelCompensationSteps) + 1;
|
|
startSpeedTimesCdivA = params.startSpeedTimesCdivA + compensationClocks;
|
|
#if CACHE_startSpeedTimesCdivAsquared
|
|
startSpeedTimesCdivAsquared = isquare64(startSpeedTimesCdivA);
|
|
#endif
|
|
|
|
// Constant speed phase parameters
|
|
mp.cart.mmPerStepTimesCdivtopSpeed = (uint32_t)(((float)DDA::stepClockRate * K1)/(stepsPerMm * dda.topSpeed));
|
|
accelClocksMinusAccelDistanceTimesCdivTopSpeed = (int32_t)params.accelClocksMinusAccelDistanceTimesCdivTopSpeed - (int32_t)(compensationClocks * params.compFactor);
|
|
|
|
// Deceleration and reverse phase parameters
|
|
// First check whether there is any deceleration at all, otherwise we may get strange results because of rounding errors
|
|
if (dda.decelDistance * stepsPerMm < 0.5)
|
|
{
|
|
totalSteps = netSteps;
|
|
mp.cart.decelStartStep = mp.cart.reverseStartStep = netSteps + 1;
|
|
topSpeedTimesCdivAPlusDecelStartClocks = 0;
|
|
mp.cart.fourMaxStepDistanceMinusTwoDistanceToStopTimesCsquaredDivA = 0;
|
|
twoDistanceToStopTimesCsquaredDivA = 0;
|
|
}
|
|
else
|
|
{
|
|
mp.cart.decelStartStep = (uint32_t)((params.decelStartDistance * stepsPerMm) + accelCompensationSteps) + 1;
|
|
const int32_t initialDecelSpeedTimesCdivA = (int32_t)params.topSpeedTimesCdivA - (int32_t)compensationClocks; // signed because it may be negative and we square it
|
|
const uint64_t initialDecelSpeedTimesCdivASquared = isquare64(initialDecelSpeedTimesCdivA);
|
|
topSpeedTimesCdivAPlusDecelStartClocks = params.topSpeedTimesCdivAPlusDecelStartClocks - compensationClocks;
|
|
twoDistanceToStopTimesCsquaredDivA =
|
|
initialDecelSpeedTimesCdivASquared + (uint64_t)(((params.decelStartDistance + accelCompensationDistance) * (DDA::stepClockRateSquared * 2))/dda.acceleration);
|
|
|
|
const float initialDecelSpeed = dda.topSpeed - dda.acceleration * compensationTime;
|
|
const float reverseStartDistance = (initialDecelSpeed > 0.0) ? fsquare(initialDecelSpeed)/(2 * dda.acceleration) + params.decelStartDistance : params.decelStartDistance;
|
|
|
|
// Reverse phase parameters
|
|
if (reverseStartDistance >= dda.totalDistance)
|
|
{
|
|
// No reverse phase
|
|
totalSteps = netSteps;
|
|
mp.cart.reverseStartStep = netSteps + 1;
|
|
mp.cart.fourMaxStepDistanceMinusTwoDistanceToStopTimesCsquaredDivA = 0;
|
|
}
|
|
else
|
|
{
|
|
mp.cart.reverseStartStep = (initialDecelSpeed < 0.0)
|
|
? mp.cart.decelStartStep
|
|
: (twoDistanceToStopTimesCsquaredDivA/mp.cart.twoCsquaredTimesMmPerStepDivA) + 1;
|
|
// Because the step numbers are rounded down, we may sometimes get a situation in which netSteps = 1 and reverseStartStep = 1.
|
|
// This would lead to totalSteps = -1, which must be avoided.
|
|
int32_t overallSteps = (int32_t)(2 * (mp.cart.reverseStartStep - 1)) - netSteps;
|
|
if (overallSteps > 0)
|
|
{
|
|
totalSteps = overallSteps;
|
|
mp.cart.fourMaxStepDistanceMinusTwoDistanceToStopTimesCsquaredDivA =
|
|
(int64_t)((2 * (mp.cart.reverseStartStep - 1)) * mp.cart.twoCsquaredTimesMmPerStepDivA) - (int64_t)twoDistanceToStopTimesCsquaredDivA;
|
|
}
|
|
else
|
|
{
|
|
totalSteps = (uint)max<int32_t>(netSteps, 0);
|
|
mp.cart.reverseStartStep = totalSteps + 1;
|
|
mp.cart.fourMaxStepDistanceMinusTwoDistanceToStopTimesCsquaredDivA = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void DriveMovement::DebugPrint(char c, bool isDeltaMovement) const
|
|
{
|
|
if (moving || stepError)
|
|
{
|
|
debugPrintf("DM%c%s dir=%c steps=%u next=%u sstcda=%u "
|
|
#if CACHE_startSpeedTimesCdivAsquared
|
|
"sstcda2=%" PRIu64 " "
|
|
#endif
|
|
"acmadtcdts=%d tstcdapdsc=%u tstdca2=%" PRIu64 "\n",
|
|
c, (stepError) ? " ERR:" : ":", (direction) ? 'F' : 'B', totalSteps, nextStep, startSpeedTimesCdivA,
|
|
#if CACHE_startSpeedTimesCdivAsquared
|
|
startSpeedTimesCdivAsquared,
|
|
#endif
|
|
accelClocksMinusAccelDistanceTimesCdivTopSpeed, topSpeedTimesCdivAPlusDecelStartClocks, twoDistanceToStopTimesCsquaredDivA);
|
|
|
|
if (isDeltaMovement)
|
|
{
|
|
debugPrintf("revss=%d hmz0sK=%d minusAaPlusBbTimesKs=%d dSquaredMinusAsquaredMinusBsquared=%" PRId64 "\n"
|
|
"2c2mmsdak=%u asdsk=%u dsdsk=%u mmstcdts=%u\n",
|
|
mp.delta.reverseStartStep, mp.delta.hmz0sK, mp.delta.minusAaPlusBbTimesKs, mp.delta.dSquaredMinusAsquaredMinusBsquaredTimesKsquaredSsquared,
|
|
mp.delta.twoCsquaredTimesMmPerStepDivAK, mp.delta.accelStopDsK, mp.delta.decelStartDsK, mp.delta.mmPerStepTimesCdivtopSpeedK
|
|
);
|
|
}
|
|
else
|
|
{
|
|
debugPrintf("accelStopStep=%u decelStartStep=%u revStartStep=%u nextStep=%u nextStepTime=%u 2CsqtMmPerStepDivA=%" PRIu64 "\n",
|
|
mp.cart.accelStopStep, mp.cart.decelStartStep, mp.cart.reverseStartStep, nextStep, nextStepTime, mp.cart.twoCsquaredTimesMmPerStepDivA
|
|
);
|
|
debugPrintf(" mmPerStepTimesCdivtopSpeed=%u fmsdmtstdca2=%" PRId64 "\n",
|
|
mp.cart.mmPerStepTimesCdivtopSpeed, mp.cart.fourMaxStepDistanceMinusTwoDistanceToStopTimesCsquaredDivA
|
|
);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
debugPrintf("DM%c: not moving\n", c);
|
|
}
|
|
}
|
|
|
|
// The remaining functions are speed-critical, so use full optimisation
|
|
#pragma GCC optimize ("O3")
|
|
|
|
// Calculate the time since the start of the move when the next step for the specified DriveMovement is due
|
|
uint32_t DriveMovement::CalcNextStepTimeCartesian(size_t drive)
|
|
{
|
|
if (nextStep >= totalSteps)
|
|
{
|
|
moving = false;
|
|
return NoStepTime;
|
|
}
|
|
|
|
uint32_t lastStepTime = nextStepTime; // pick up the time of the last step
|
|
++nextStep;
|
|
if (nextStep < mp.cart.accelStopStep)
|
|
{
|
|
#if CACHE_startSpeedTimesCdivAsquared
|
|
nextStepTime = isqrt(startSpeedTimesCdivAsquared + (mp.cart.twoCsquaredTimesMmPerStepDivA * nextStep)) - startSpeedTimesCdivA;
|
|
#else
|
|
nextStepTime = isqrt(isquare64(startSpeedTimesCdivA) + (mp.cart.twoCsquaredTimesMmPerStepDivA * nextStep)) - startSpeedTimesCdivA;
|
|
#endif
|
|
}
|
|
else if (nextStep < mp.cart.decelStartStep)
|
|
{
|
|
nextStepTime = (uint32_t)((int32_t)(((uint64_t)mp.cart.mmPerStepTimesCdivtopSpeed * nextStep)/K1) + accelClocksMinusAccelDistanceTimesCdivTopSpeed);
|
|
}
|
|
else if (nextStep < mp.cart.reverseStartStep)
|
|
{
|
|
uint64_t temp = mp.cart.twoCsquaredTimesMmPerStepDivA * nextStep;
|
|
// Allow for possible rounding error when the end speed is zero or very small
|
|
nextStepTime = (twoDistanceToStopTimesCsquaredDivA > temp)
|
|
? topSpeedTimesCdivAPlusDecelStartClocks - isqrt(twoDistanceToStopTimesCsquaredDivA - temp)
|
|
: topSpeedTimesCdivAPlusDecelStartClocks;
|
|
}
|
|
else
|
|
{
|
|
if (nextStep == mp.cart.reverseStartStep)
|
|
{
|
|
reprap.GetPlatform()->SetDirection(drive, !direction, false);
|
|
}
|
|
nextStepTime = topSpeedTimesCdivAPlusDecelStartClocks
|
|
+ isqrt((int64_t)(mp.cart.twoCsquaredTimesMmPerStepDivA * nextStep) - mp.cart.fourMaxStepDistanceMinusTwoDistanceToStopTimesCsquaredDivA);
|
|
|
|
}
|
|
|
|
if ((int32_t)nextStepTime < (int32_t)(lastStepTime + DDA::MinStepTime) && nextStep > 1)
|
|
{
|
|
stepError = true;
|
|
return NoStepTime;
|
|
}
|
|
return nextStepTime;
|
|
}
|
|
|
|
// Calculate the time since the start of the move when the next step for the specified DriveMovement is due
|
|
uint32_t DriveMovement::CalcNextStepTimeDelta(const DDA &dda, size_t drive)
|
|
{
|
|
if (nextStep >= totalSteps)
|
|
{
|
|
moving = false;
|
|
return NoStepTime;
|
|
}
|
|
|
|
uint32_t lastStepTime = nextStepTime; // pick up the time of the last step
|
|
++nextStep;
|
|
if (nextStep == mp.delta.reverseStartStep)
|
|
{
|
|
direction = false;
|
|
reprap.GetPlatform()->SetDirection(drive, false, false); // going down now
|
|
}
|
|
|
|
// Calculate d*s*K as an integer, where d = distance the head has travelled, s = steps/mm for this drive, K = a power of 2 to reduce the rounding errors
|
|
if (direction)
|
|
{
|
|
mp.delta.hmz0sK += (int32_t)K2;
|
|
}
|
|
else
|
|
{
|
|
mp.delta.hmz0sK -= (int32_t)K2;
|
|
}
|
|
|
|
const int32_t hmz0scK = (int32_t)(((int64_t)mp.delta.hmz0sK * dda.cKc)/Kc);
|
|
const int32_t t1 = mp.delta.minusAaPlusBbTimesKs + hmz0scK;
|
|
const int32_t t2 = isqrt(isquare64(t1) + mp.delta.dSquaredMinusAsquaredMinusBsquaredTimesKsquaredSsquared - isquare64(mp.delta.hmz0sK));
|
|
const int32_t dsK = (direction) ? t1 - t2 : t1 + t2;
|
|
|
|
// Now feed dsK into a modified version of the step algorithm for Cartesian motion without elasticity compensation
|
|
if (dsK < 0)
|
|
{
|
|
stepError = true;
|
|
nextStep += 1000000; // so that we can tell what happened in the debug print
|
|
return NoStepTime;
|
|
}
|
|
if ((uint32_t)dsK < mp.delta.accelStopDsK)
|
|
{
|
|
#if CACHE_startSpeedTimesCdivAsquared
|
|
nextStepTime = isqrt(startSpeedTimesCdivAsquared + ((uint64_t)mp.delta.twoCsquaredTimesMmPerStepDivAK * (uint32_t)dsK)) - startSpeedTimesCdivA;
|
|
#else
|
|
nextStepTime = isqrt(isquare64(startSpeedTimesCdivA) + ((uint64_t)mp.delta.twoCsquaredTimesMmPerStepDivAK * (uint32_t)dsK)) - startSpeedTimesCdivA;
|
|
#endif
|
|
}
|
|
else if ((uint32_t)dsK < mp.delta.decelStartDsK)
|
|
{
|
|
nextStepTime = (uint32_t)((int32_t)(((uint64_t)mp.delta.mmPerStepTimesCdivtopSpeedK * (uint32_t)dsK)/(K1 * K2)) + accelClocksMinusAccelDistanceTimesCdivTopSpeed);
|
|
}
|
|
else
|
|
{
|
|
uint64_t temp = (uint64_t)mp.delta.twoCsquaredTimesMmPerStepDivAK * (uint32_t)dsK;
|
|
// Because of possible rounding error when the end speed is zero or very small, we need to check that the square root will work OK
|
|
nextStepTime = (temp < twoDistanceToStopTimesCsquaredDivA)
|
|
? topSpeedTimesCdivAPlusDecelStartClocks - isqrt(twoDistanceToStopTimesCsquaredDivA - temp)
|
|
: topSpeedTimesCdivAPlusDecelStartClocks;
|
|
}
|
|
|
|
if ((int32_t)nextStepTime < (int32_t)(lastStepTime + DDA::MinStepTime) && nextStep > 1)
|
|
{
|
|
stepError = true;
|
|
// debugPrintf("%u %u %u %d %d %d %d\n", nextStep, nextStepTime, lastStepTime, dsK, t1, t2, mp.delta.hmz0sK);
|
|
return NoStepTime;
|
|
}
|
|
return nextStepTime;
|
|
}
|
|
|
|
// Reduce the speed of this movement. Called to reduce the homing speed when we detect we are near the endstop for a drive.
|
|
void DriveMovement::ReduceSpeed(const DDA& dda, float inverseSpeedFactor)
|
|
{
|
|
if (dda.isDeltaMovement)
|
|
{
|
|
// Force the linear motion phase
|
|
mp.delta.accelStopDsK = 0;
|
|
mp.delta.decelStartDsK = 0xFFFFFFFF;
|
|
|
|
// Adjust the speed
|
|
mp.delta.mmPerStepTimesCdivtopSpeedK = (uint32_t)(inverseSpeedFactor * mp.delta.mmPerStepTimesCdivtopSpeedK);
|
|
|
|
// Adjust the acceleration clocks to as to maintain continuity of movement
|
|
const int32_t hmz0scK = (int32_t)(((int64_t)mp.delta.hmz0sK * dda.cKc)/Kc);
|
|
const int32_t t1 = mp.delta.minusAaPlusBbTimesKs + hmz0scK;
|
|
const int32_t t2 = isqrt(isquare64(t1) + mp.delta.dSquaredMinusAsquaredMinusBsquaredTimesKsquaredSsquared - isquare64(mp.delta.hmz0sK));
|
|
const int32_t dsK = (direction) ? t1 - t2 : t1 + t2;
|
|
accelClocksMinusAccelDistanceTimesCdivTopSpeed = (int32_t)nextStepTime - (int32_t)(((uint64_t)mp.delta.mmPerStepTimesCdivtopSpeedK * (uint32_t)dsK)/(K1 * K2));
|
|
}
|
|
else
|
|
{
|
|
// Force the linear motion phase
|
|
mp.cart.decelStartStep = totalSteps + 1;
|
|
mp.cart.accelStopStep = 0;
|
|
|
|
// Adjust the speed
|
|
mp.cart.mmPerStepTimesCdivtopSpeed = (uint32_t)(inverseSpeedFactor * mp.cart.mmPerStepTimesCdivtopSpeed);
|
|
|
|
// Adjust the acceleration clocks to as to maintain continuity of movement
|
|
accelClocksMinusAccelDistanceTimesCdivTopSpeed = (int32_t)nextStepTime - (int32_t)(((uint64_t)mp.cart.mmPerStepTimesCdivtopSpeed * nextStep)/K1);
|
|
}
|
|
}
|
|
|
|
// Fast 64-bit integer square root function
|
|
/* static */ uint32_t DriveMovement::isqrt(uint64_t num)
|
|
{
|
|
//irqflags_t flags = cpu_irq_save();
|
|
//uint32_t t2 = Platform::GetInterruptClocks();
|
|
uint32_t numHigh = (uint32_t)(num >> 32);
|
|
if (numHigh != 0)
|
|
{
|
|
uint32_t resHigh = 0;
|
|
|
|
#define iter64a(N) \
|
|
{ \
|
|
uint32_t temp = resHigh + (1 << N); \
|
|
if (numHigh >= temp << N) \
|
|
{ \
|
|
numHigh -= temp << N; \
|
|
resHigh |= 2 << N; \
|
|
} \
|
|
}
|
|
|
|
// We need to do 16 iterations
|
|
iter64a(15); iter64a(14); iter64a(13); iter64a(12);
|
|
iter64a(11); iter64a(10); iter64a(9); iter64a(8);
|
|
iter64a(7); iter64a(6); iter64a(5); iter64a(4);
|
|
iter64a(3); iter64a(2); iter64a(1); iter64a(0);
|
|
|
|
// resHigh is twice the square root of the msw, in the range 0..2^17-1
|
|
uint64_t res = (uint64_t)resHigh << 16;
|
|
uint64_t numAll = ((uint64_t)numHigh << 32) | (uint32_t)num;
|
|
|
|
#define iter64b(N) \
|
|
{ \
|
|
uint64_t temp = res | (1 << N); \
|
|
if (numAll >= temp << N) \
|
|
{ \
|
|
numAll -= temp << N; \
|
|
res |= 2 << N; \
|
|
} \
|
|
}
|
|
|
|
// We need to do 16 iterations
|
|
iter64b(15); iter64b(14); iter64b(13); iter64b(12);
|
|
iter64b(11); iter64b(10); iter64b(9); iter64b(8);
|
|
iter64b(7); iter64b(6); iter64b(5); iter64b(4);
|
|
iter64b(3); iter64b(2); iter64b(1); iter64b(0);
|
|
|
|
uint32_t rslt = (uint32_t)(res >> 1);
|
|
|
|
//uint32_t t3 = Platform::GetInterruptClocks() - t2; if (t3 < minCalcTime) minCalcTime = t3; if (t3 > maxCalcTime) maxCalcTime = t3;
|
|
//cpu_irq_restore(flags);
|
|
//uint64_t num3 = (uint64_t)rslt * rslt; if (num3 > num || (num - num3) > 2*rslt) {++sqrtErrors; lastNum = num; lastRes = rslt; }
|
|
return rslt;
|
|
}
|
|
else
|
|
{
|
|
// 32-bit square root
|
|
uint32_t num32 = (uint32_t)num;
|
|
uint32_t res32 = 0;
|
|
|
|
// Thanks to Wilco Dijksra for this efficient ARM algorithm
|
|
#define iter32(N) \
|
|
{ \
|
|
uint32_t temp = res32 | (1 << N); \
|
|
if (num32 >= temp << N) \
|
|
{ \
|
|
num32 -= temp << N; \
|
|
res32 |= 2 << N; \
|
|
} \
|
|
}
|
|
|
|
// We need to do 16 iterations
|
|
iter32(15); iter32(14); iter32(13); iter32(12);
|
|
iter32(11); iter32(10); iter32(9); iter32(8);
|
|
iter32(7); iter32(6); iter32(5); iter32(4);
|
|
iter32(3); iter32(2); iter32(1); iter32(0);
|
|
|
|
res32 >>= 1;
|
|
|
|
//uint32_t t3 = Platform::GetInterruptClocks() - t2; if (t3 < minCalcTime) minCalcTime = t3; if (t3 > maxCalcTime) maxCalcTime = t3;
|
|
//cpu_irq_restore(flags);
|
|
//uint64_t num3 = (uint64_t)res32 * res32; if (num3 > num || (num - num3) > 2*res32) {++sqrtErrors; lastNum = num; lastRes = res32; }
|
|
return res32;
|
|
}
|
|
}
|
|
|
|
// End
|