This repository has been archived on 2025-02-01. You can view files and clone it, but cannot push or open issues or pull requests.
reprapfirmware-dc42/Move.cpp
David Crocker 5b77a17043 Version 1.00b
Added X and Y z-probe offsets to G31 command
Reworked G31 and G32 to do less work in the step ISR and to support Z
probe on delta printers
Z probe modulation pin is now selected using M558 R parameter instead of
probe type
2015-01-25 23:21:48 +00:00

905 lines
25 KiB
C++

/*
* Move.cpp
*
* Created on: 7 Dec 2014
* Author: David
*/
#include "RepRapFirmware.h"
void DeltaParameters::Init()
{
deltaMode = false;
diagonal = 0.0;
radius = 0.0;
printRadius = defaultPrintRadius;
homedHeight = defaultDeltaHomedHeight;
for (size_t axis = 0; axis < AXES; ++axis)
{
endstopAdjustments[axis] = 0.0;
towerX[axis] = towerY[axis] = 0.0;
}
}
void DeltaParameters::SetRadius(float r)
{
radius = r;
const float cos30 = sqrtf(3.0)/2.0;
const float sin30 = 0.5;
towerX[A_AXIS] = -(r * cos30);
towerX[B_AXIS] = r * cos30;
towerX[C_AXIS] = 0.0;
towerY[A_AXIS] = towerY[B_AXIS] = -(r * sin30);
towerY[C_AXIS] = r;
Recalc();
}
void DeltaParameters::Recalc()
{
deltaMode = (radius > 0.0 && diagonal > radius);
if (deltaMode)
{
homedCarriageHeight = homedHeight + sqrtf(fsquare(diagonal) - fsquare(radius));
Xbc = towerX[C_AXIS] - towerX[B_AXIS];
Xca = towerX[A_AXIS] - towerX[C_AXIS];
Xab = towerX[B_AXIS] - towerX[A_AXIS];
Ybc = towerY[C_AXIS] - towerY[B_AXIS];
Yca = towerY[A_AXIS] - towerY[C_AXIS];
Yab = towerY[B_AXIS] - towerY[A_AXIS];
coreFa = fsquare(towerX[A_AXIS]) + fsquare(towerY[A_AXIS]);
coreFb = fsquare(towerX[B_AXIS]) + fsquare(towerY[B_AXIS]);
coreFc = fsquare(towerX[C_AXIS]) + fsquare(towerY[C_AXIS]);
Q = 2 * (Xca * Yab - Xab * Yca);
Q2 = fsquare(Q);
}
}
// Calculate the motor position for a single tower from a Cartesian coordinate
float DeltaParameters::Transform(const float machinePos[AXES], size_t axis) const
{
return machinePos[Z_AXIS]
+ sqrt(fsquare(diagonal) - fsquare(machinePos[X_AXIS] - towerX[axis]) - fsquare(machinePos[Y_AXIS] - towerY[axis]));
}
void DeltaParameters::InverseTransform(float Ha, float Hb, float Hc, float machinePos[]) const
{
const float Fa = coreFa + fsquare(Ha);
const float Fb = coreFb + fsquare(Hb);
const float Fc = coreFc + fsquare(Hc);
// debugPrintf("Ha=%f Hb=%f Hc=%f Fa=%f Fb=%f Fc=%f Xbc=%f Xca=%f Xab=%f Ybc=%f Yca=%f Yab=%f\n",
// Ha, Hb, Hc, Fa, Fb, Fc, Xbc, Xca, Xab, Ybc, Yca, Yab);
// Setup PQRSU such that x = -(S - uz)/P, y = (P - Rz)/Q
const float P = (Xbc * Fa) + (Xca * Fb) + (Xab * Fc);
const float S = (Ybc * Fa) + (Yca * Fb) + (Yab * Fc);
const float R = 2 * ((Xbc * Ha) + (Xca * Hb) + (Xab * Hc));
const float U = 2 * ((Ybc * Ha) + (Yca * Hb) + (Yab * Hc));
// debugPrintf("P= %f R=%f S=%f U=%f Q=%f\n", P, R, S, U, Q);
const float R2 = fsquare(R), U2 = fsquare(U);
float A = U2 + R2 + Q2;
float minusHalfB = S * U + P * R + Ha * Q2 + towerX[A_AXIS] * U * Q - towerY[A_AXIS] * R * Q;
float C = fsquare(S + towerX[A_AXIS] * Q) + fsquare(P - towerY[A_AXIS] * Q) + (fsquare(Ha) - fsquare(diagonal)) * Q2;
// debugPrintf("A=%f minusHalfB=%f C=%f\n", A, minusHalfB, C);
float z = (minusHalfB - sqrtf(fsquare(minusHalfB) - A * C)) / A;
machinePos[X_AXIS] = (U * z - S) / Q;
machinePos[Y_AXIS] = (P - R * z) / Q;
machinePos[Z_AXIS] = z;
}
Move::Move(Platform* p, GCodes* g) : currentDda(NULL)
{
active = false;
// Build the DDA ring
DDA *dda = new DDA(NULL);
ddaRingGetPointer = ddaRingAddPointer = dda;
for(size_t i = 1; i < DdaRingLength; i++)
{
DDA *oldDda = dda;
dda = new DDA(dda);
oldDda->SetPrevious(dda);
}
ddaRingAddPointer->SetNext(dda);
dda->SetPrevious(ddaRingAddPointer);
}
void Move::Init()
{
// Reset Cartesian mode
deltaParams.Init();
// Empty the ring
ddaRingGetPointer = ddaRingAddPointer;
DDA *dda = ddaRingAddPointer;
do
{
dda->Init();
dda = dda->GetNext();
} while (dda != ddaRingAddPointer);
currentDda = nullptr;
addNoMoreMoves = false;
// Clear the transforms
SetIdentityTransform();
tanXY = tanYZ = tanXZ = 0.0;
// Put the origin on the lookahead ring with default velocity in the previous position to the first one that will be used.
// Do this by calling SetLiveCoordinates and SetPositions, so that the motor coordinates will be correct too even on a delta.
float move[DRIVES];
for (size_t i = 0; i < DRIVES; i++)
{
move[i] = 0.0;
reprap.GetPlatform()->SetDirection(i, FORWARDS, false);
}
SetLiveCoordinates(move);
SetPositions(move);
size_t slow = reprap.GetPlatform()->SlowestDrive();
currentFeedrate = reprap.GetPlatform()->HomeFeedRate(slow);
// Set up default bed probe points. This is only a guess, because we don't know the bed size yet.
for (size_t point = 0; point < NUMBER_OF_PROBE_POINTS; point++)
{
xBedProbePoints[point] = (0.3 + 0.6*(float)(point%2))*reprap.GetPlatform()->AxisMaximum(X_AXIS);
yBedProbePoints[point] = (0.0 + 0.9*(float)(point/2))*reprap.GetPlatform()->AxisMaximum(Y_AXIS);
zBedProbePoints[point] = 0.0;
probePointSet[point] = unset;
}
xRectangle = 1.0/(0.8*reprap.GetPlatform()->AxisMaximum(X_AXIS));
yRectangle = xRectangle;
lastTime = reprap.GetPlatform()->Time();
longWait = lastTime;
active = true;
}
void Move::Exit()
{
reprap.GetPlatform()->Message(BOTH_MESSAGE, "Move class exited.\n");
active = false;
}
void Move::Spin()
{
if (!active)
{
return;
}
// See if we can add another move to the ring
if (!addNoMoreMoves && ddaRingAddPointer->GetState() == DDA::empty)
{
if (reprap.Debug(moduleMove))
{
ddaRingAddPointer->PrintIfHasStepError();
}
// If there's a G Code move available, add it to the DDA ring for processing.
float nextMove[DRIVES + 1];
EndstopChecks endStopsToCheck;
bool noDeltaMapping;
if (reprap.GetGCodes()->ReadMove(nextMove, endStopsToCheck, noDeltaMapping))
{
currentFeedrate = nextMove[DRIVES]; // might be G1 with just an F field
if (!noDeltaMapping || !IsDeltaMode())
{
Transform(nextMove);
}
if (ddaRingAddPointer->Init(nextMove, endStopsToCheck, IsDeltaMode() && !noDeltaMapping))
{
ddaRingAddPointer = ddaRingAddPointer->GetNext();
}
}
}
// See whether we need to kick off a move
DDA *cdda = currentDda; // currentDda is volatile, so copy it
if (cdda == nullptr)
{
// No DDA is executing, so start executing a new one if possible
DDA *dda = ddaRingGetPointer;
if (dda->GetState() == DDA::provisional)
{
dda->Prepare();
}
if (StartNextMove(Platform::GetInterruptClocks())) // start the next move if none is executing already
{
cpu_irq_disable();
Interrupt();
cpu_irq_enable();
}
}
else
{
// See whether we need to prepare any moves
int32_t preparedTime = 0;
DDA::DDAState st;
while ((st = cdda->GetState()) == DDA:: completed || st == DDA::executing || st == DDA::frozen)
{
preparedTime += cdda->GetTimeLeft();
cdda = cdda->GetNext();
}
// If the number of prepared moves will execute in less than the minimum time, prepare another move
while (st == DDA::provisional && preparedTime < (int32_t)(DDA::stepClockRate/8)) // prepare moves one eighth of a second ahead of when they will be needed
{
cdda->Prepare();
preparedTime += cdda->GetTimeLeft();
cdda = cdda->GetNext();
st = cdda->GetState();
}
}
reprap.GetPlatform()->ClassReport("Move", longWait, moduleMove);
}
uint32_t maxStepTime=0, maxCalcTime=0, minCalcTime = 999, maxReps = 0;
void Move::Diagnostics()
{
reprap.GetPlatform()->AppendMessage(BOTH_MESSAGE, "Move Diagnostics:\n");
reprap.GetPlatform()->AppendMessage(BOTH_MESSAGE, "MaxStepClocks: %u, minCalcClocks: %u, maxCalcClocks: %u, maxReps: %u\n",
maxStepTime, minCalcTime, maxCalcTime, maxReps);
maxStepTime = maxCalcTime = maxReps = 0;
minCalcTime = 999;
#if 0
if(active)
platform->Message(HOST_MESSAGE, " active\n");
else
platform->Message(HOST_MESSAGE, " not active\n");
platform->Message(HOST_MESSAGE, " look ahead ring count: ");
snprintf(scratchString, STRING_LENGTH, "%d\n", lookAheadRingCount);
platform->Message(HOST_MESSAGE, scratchString);
if(dda == NULL)
platform->Message(HOST_MESSAGE, " dda: NULL\n");
else
{
if(dda->Active())
platform->Message(HOST_MESSAGE, " dda: active\n");
else
platform->Message(HOST_MESSAGE, " dda: not active\n");
}
if(ddaRingLocked)
platform->Message(HOST_MESSAGE, " dda ring is locked\n");
else
platform->Message(HOST_MESSAGE, " dda ring is not locked\n");
if(addNoMoreMoves)
platform->Message(HOST_MESSAGE, " addNoMoreMoves is true\n\n");
else
platform->Message(HOST_MESSAGE, " addNoMoreMoves is false\n\n");
#endif
}
// These are the actual numbers we want in the positions, so don't transform them.
void Move::SetPositions(const float move[DRIVES])
{
if (DDARingEmpty())
{
ddaRingAddPointer->GetPrevious()->SetPositions(move);
}
else
{
reprap.GetPlatform()->Message(BOTH_ERROR_MESSAGE, "SetPositions called when DDA ring not empty\n");
}
}
void Move::EndPointToMachine(const float coords[], int32_t ep[], size_t numDrives) const
{
if (IsDeltaMode())
{
DeltaTransform(coords, ep);
for (size_t drive = AXES; drive < numDrives; ++drive)
{
ep[drive] = MotorEndPointToMachine(drive, coords[drive]);
}
}
else
{
for (size_t drive = 0; drive < DRIVES; drive++)
{
ep[drive] = MotorEndPointToMachine(drive, coords[drive]);
}
}
}
void Move::SetFeedrate(float feedRate)
{
if (DDARingEmpty())
{
DDA *lastMove = ddaRingAddPointer->GetPrevious();
currentFeedrate = feedRate;
lastMove->SetFeedRate(feedRate);
}
else
{
reprap.GetPlatform()->Message(BOTH_ERROR_MESSAGE, "SetFeedrate called when DDA ring not empty\n");
}
}
// Returns steps from units (mm) for a particular drive
int32_t Move::MotorEndPointToMachine(size_t drive, float coord)
{
return (int32_t)roundf(coord * reprap.GetPlatform()->DriveStepsPerUnit(drive));
}
// Convert motor coordinates to machine coordinates
// This is computationally expensive on a delta, so only call it when necessary, and never from the step ISR.
void Move::MachineToEndPoint(const int32_t motorPos[], float machinePos[], size_t numDrives) const
{
if (IsDeltaMode())
{
InverseDeltaTransform(motorPos, machinePos); // convert the axes
for (size_t drive = AXES; drive < numDrives; ++drive)
{
machinePos[drive] = MotorEndpointToPosition(motorPos[drive], drive);
}
}
else
{
for (size_t drive = 0; drive < numDrives; ++drive)
{
machinePos[drive] = MotorEndpointToPosition(motorPos[drive], drive);
}
}
}
// Do the Axis transform BEFORE the bed transform
void Move::AxisTransform(float xyzPoint[AXES]) const
{
xyzPoint[X_AXIS] = xyzPoint[X_AXIS] + tanXY*xyzPoint[Y_AXIS] + tanXZ*xyzPoint[Z_AXIS];
xyzPoint[Y_AXIS] = xyzPoint[Y_AXIS] + tanYZ*xyzPoint[Z_AXIS];
}
// Invert the Axis transform AFTER the bed transform
void Move::InverseAxisTransform(float xyzPoint[AXES]) const
{
xyzPoint[Y_AXIS] = xyzPoint[Y_AXIS] - tanYZ*xyzPoint[Z_AXIS];
xyzPoint[X_AXIS] = xyzPoint[X_AXIS] - (tanXY*xyzPoint[Y_AXIS] + tanXZ*xyzPoint[Z_AXIS]);
}
void Move::Transform(float xyzPoint[AXES]) const
{
AxisTransform(xyzPoint);
BedTransform(xyzPoint);
}
void Move::InverseTransform(float xyzPoint[AXES]) const
{
InverseBedTransform(xyzPoint);
InverseAxisTransform(xyzPoint);
}
// Do the bed transform AFTER the axis transform
void Move::BedTransform(float xyzPoint[AXES]) const
{
if (!identityBedTransform)
{
switch(NumberOfProbePoints())
{
case 0:
return;
case 3:
xyzPoint[Z_AXIS] = xyzPoint[Z_AXIS] + aX*xyzPoint[X_AXIS] + aY*xyzPoint[Y_AXIS] + aC;
break;
case 4:
xyzPoint[Z_AXIS] = xyzPoint[Z_AXIS] + SecondDegreeTransformZ(xyzPoint[X_AXIS], xyzPoint[Y_AXIS]);
break;
case 5:
xyzPoint[Z_AXIS] = xyzPoint[Z_AXIS] + TriangleZ(xyzPoint[X_AXIS], xyzPoint[Y_AXIS]);
break;
default:
reprap.GetPlatform()->Message(BOTH_ERROR_MESSAGE, "BedTransform: wrong number of sample points.");
}
}
}
// Invert the bed transform BEFORE the axis transform
void Move::InverseBedTransform(float xyzPoint[AXES]) const
{
if (!identityBedTransform)
{
switch(NumberOfProbePoints())
{
case 0:
return;
case 3:
xyzPoint[Z_AXIS] = xyzPoint[Z_AXIS] - (aX*xyzPoint[X_AXIS] + aY*xyzPoint[Y_AXIS] + aC);
break;
case 4:
xyzPoint[Z_AXIS] = xyzPoint[Z_AXIS] - SecondDegreeTransformZ(xyzPoint[X_AXIS], xyzPoint[Y_AXIS]);
break;
case 5:
xyzPoint[Z_AXIS] = xyzPoint[Z_AXIS] - TriangleZ(xyzPoint[X_AXIS], xyzPoint[Y_AXIS]);
break;
default:
reprap.GetPlatform()->Message(BOTH_ERROR_MESSAGE, "InverseBedTransform: wrong number of sample points.");
}
}
}
// Convert motor step positions to Cartesian machine coordinates.
// Used after homing and after individual motor moves.
// Because this is computationally expensive, we only call it when necessary, and never from the step ISR.
void Move::InverseDeltaTransform(const int32_t motorPos[AXES], float machinePos[AXES]) const
{
deltaParams.InverseTransform(
MotorEndpointToPosition(motorPos[A_AXIS], A_AXIS),
MotorEndpointToPosition(motorPos[B_AXIS], B_AXIS),
MotorEndpointToPosition(motorPos[C_AXIS], C_AXIS),
machinePos);
// We don't do inverse transforms very often, so if debugging is enabled, print them
if (reprap.Debug(moduleMove))
{
debugPrintf("Inverse transformed %d %d %d to %f %f %f\n", motorPos[0], motorPos[1], motorPos[2], machinePos[0], machinePos[1], machinePos[2]);
}
}
// Convert Cartesian coordinates to delta motor steps
void Move::DeltaTransform(const float machinePos[AXES], int32_t motorPos[AXES]) const
{
for (size_t axis = 0; axis < AXES; ++axis)
{
motorPos[axis] = MotorEndPointToMachine(axis, deltaParams.Transform(machinePos, axis));
}
if (reprap.Debug(moduleMove) && reprap.Debug(moduleDda))
{
debugPrintf("Transformed %f %f %f to %d %d %d\n", machinePos[0], machinePos[1], machinePos[2], motorPos[0], motorPos[1], motorPos[2]);
}
}
void Move::SetIdentityTransform()
{
identityBedTransform = true;
}
float Move::AxisCompensation(int8_t axis) const
{
switch(axis)
{
case X_AXIS:
return tanXY;
case Y_AXIS:
return tanYZ;
case Z_AXIS:
return tanXZ;
default:
reprap.GetPlatform()->Message(BOTH_ERROR_MESSAGE, "Axis compensation requested for non-existent axis.\n");
}
return 0.0;
}
void Move::SetAxisCompensation(int8_t axis, float tangent)
{
switch(axis)
{
case X_AXIS:
tanXY = tangent;
break;
case Y_AXIS:
tanYZ = tangent;
break;
case Z_AXIS:
tanXZ = tangent;
break;
default:
reprap.GetPlatform()->Message(BOTH_ERROR_MESSAGE, "SetAxisCompensation: dud axis.\n");
}
}
void Move::BarycentricCoordinates(size_t p1, size_t p2, size_t p3, float x, float y, float& l1, float& l2, float& l3) const
{
float y23 = baryYBedProbePoints[p2] - baryYBedProbePoints[p3];
float x3 = x - baryXBedProbePoints[p3];
float x32 = baryXBedProbePoints[p3] - baryXBedProbePoints[p2];
float y3 = y - baryYBedProbePoints[p3];
float x13 = baryXBedProbePoints[p1] - baryXBedProbePoints[p3];
float y13 = baryYBedProbePoints[p1] - baryYBedProbePoints[p3];
float iDet = 1.0 / (y23 * x13 + x32 * y13);
l1 = (y23 * x3 + x32 * y3) * iDet;
l2 = (-y13 * x3 + x13 * y3) * iDet;
l3 = 1.0 - l1 - l2;
}
/*
* Interpolate on a triangular grid. The triangle corners are indexed:
*
* ^ [1] [2]
* |
* Y [4]
* |
* | [0] [3]
* -----X---->
*
*/
float Move::TriangleZ(float x, float y) const
{
for (size_t i = 0; i < 4; i++)
{
size_t j = (i + 1) % 4;
float l1, l2, l3;
BarycentricCoordinates(i, j, 4, x, y, l1, l2, l3);
if (l1 > TRIANGLE_0 && l2 > TRIANGLE_0 && l3 > TRIANGLE_0)
{
return l1 * baryZBedProbePoints[i] + l2 * baryZBedProbePoints[j] + l3 * baryZBedProbePoints[4];
}
}
reprap.GetPlatform()->Message(BOTH_ERROR_MESSAGE, "Triangle interpolation: point outside all triangles!\n");
return 0.0;
}
void Move::SetProbedBedEquation(StringRef& reply)
{
switch(NumberOfProbePoints())
{
case 3:
/*
* Transform to a plane
*/
{
float x10 = xBedProbePoints[1] - xBedProbePoints[0];
float y10 = yBedProbePoints[1] - yBedProbePoints[0];
float z10 = zBedProbePoints[1] - zBedProbePoints[0];
float x20 = xBedProbePoints[2] - xBedProbePoints[0];
float y20 = yBedProbePoints[2] - yBedProbePoints[0];
float z20 = zBedProbePoints[2] - zBedProbePoints[0];
float a = y10 * z20 - z10 * y20;
float b = z10 * x20 - x10 * z20;
float c = x10 * y20 - y10 * x20;
float d = -(xBedProbePoints[1] * a + yBedProbePoints[1] * b + zBedProbePoints[1] * c);
aX = -a / c;
aY = -b / c;
aC = -d / c;
identityBedTransform = false;
}
break;
case 4:
/*
* Transform to a ruled-surface quadratic. The corner points for interpolation are indexed:
*
* ^ [1] [2]
* |
* Y
* |
* | [0] [3]
* -----X---->
*
* These are the scaling factors to apply to x and y coordinates to get them into the
* unit interval [0, 1].
*/
xRectangle = 1.0 / (xBedProbePoints[3] - xBedProbePoints[0]);
yRectangle = 1.0 / (yBedProbePoints[1] - yBedProbePoints[0]);
identityBedTransform = false;
break;
case 5:
for(int8_t i = 0; i < 4; i++)
{
float x10 = xBedProbePoints[i] - xBedProbePoints[4];
float y10 = yBedProbePoints[i] - yBedProbePoints[4];
float z10 = zBedProbePoints[i] - zBedProbePoints[4];
baryXBedProbePoints[i] = xBedProbePoints[4] + 2.0 * x10;
baryYBedProbePoints[i] = yBedProbePoints[4] + 2.0 * y10;
baryZBedProbePoints[i] = zBedProbePoints[4] + 2.0 * z10;
}
baryXBedProbePoints[4] = xBedProbePoints[4];
baryYBedProbePoints[4] = yBedProbePoints[4];
baryZBedProbePoints[4] = zBedProbePoints[4];
identityBedTransform = false;
break;
default:
reprap.GetPlatform()->Message(BOTH_ERROR_MESSAGE, "Attempt to set bed compensation before all probe points have been recorded.");
}
reply.copy("Bed equation fits points");
for (size_t point = 0; point < NumberOfProbePoints(); point++)
{
reply.catf(" [%.1f, %.1f, %.3f]", xBedProbePoints[point], yBedProbePoints[point], zBedProbePoints[point]);
}
}
/*
* Transform to a ruled-surface quadratic. The corner points for interpolation are indexed:
*
* ^ [1] [2]
* |
* Y
* |
* | [0] [3]
* -----X---->
*
* The values of x and y are transformed to put them in the interval [0, 1].
*/
float Move::SecondDegreeTransformZ(float x, float y) const
{
x = (x - xBedProbePoints[0])*xRectangle;
y = (y - yBedProbePoints[0])*yRectangle;
return (1.0 - x)*(1.0 - y)*zBedProbePoints[0] + x*(1.0 - y)*zBedProbePoints[3] + (1.0 - x)*y*zBedProbePoints[1] + x*y*zBedProbePoints[2];
}
// This is the function that's called by the timer interrupt to step the motors.
void Move::Interrupt()
{
bool again = true;
while (again && currentDda != nullptr)
{
again = currentDda->Step();
}
}
// This is called from the step ISR when the current move has been completed
void Move::CurrentMoveCompleted()
{
// Save the current motor coordinates, and the machine Cartesian coordinates if known
liveCoordinatesValid = currentDda->FetchEndPosition(const_cast<int32_t*>(liveEndPoints), const_cast<float *>(liveCoordinates));
currentDda->Release();
currentDda = nullptr;
ddaRingGetPointer = ddaRingGetPointer->GetNext();
}
// Start the next move.
bool Move::StartNextMove(uint32_t startTime)
{
if (ddaRingGetPointer->GetState() == DDA::frozen)
{
currentDda = ddaRingGetPointer;
return currentDda->Start(startTime);
}
else
{
return false;
}
}
// This is called from the step ISR. Any variables it modifies that are also read by code outside the ISR must be declared 'volatile'.
void Move::HitLowStop(size_t drive, DDA* hitDDA)
{
if (drive < AXES && !IsDeltaMode()) // should always be true
{
float hitPoint;
if (drive == Z_AXIS)
{
// Special case of doing a G1 S1 Z move on a Cartesian printer. This is not how we normally home the Z axis, we use G30 instead.
// But I think it used to work, so let's not break it.
hitPoint = reprap.GetPlatform()->ZProbeStopHeight();
}
else
{
hitPoint = reprap.GetPlatform()->AxisMinimum(drive);
}
int32_t coord = MotorEndPointToMachine(drive, hitPoint);
hitDDA->SetDriveCoordinate(coord, drive);
reprap.GetGCodes()->SetAxisIsHomed(drive);
}
}
// This is called from the step ISR. Any variables it modifies that are also read by code outside the ISR must be declared 'volatile'.
void Move::HitHighStop(size_t drive, DDA* hitDDA)
{
if (drive < AXES) // should always be true
{
float position = (IsDeltaMode())
? deltaParams.GetHomedCarriageHeight(drive)
// this is a delta printer, so the motor is at the homed carriage height for this drive
: reprap.GetPlatform()->AxisMaximum(drive);
// this is a Cartesian printer, so we're at the maximum for this axis
hitDDA->SetDriveCoordinate(MotorEndPointToMachine(drive, position), drive);
reprap.GetGCodes()->SetAxisIsHomed(drive);
}
}
// This is called from the step ISR. Any variables it modifies that are also read by code outside the ISR must be declared 'volatile'.
// The move has already been aborted when this is called, so the endpoints in the DDA are the current motor positions.
void Move::ZProbeTriggered(DDA* hitDDA)
{
// Currently, we don't need to do anything here
}
// Return the untransformed machine coordinates
void Move::GetCurrentMachinePosition(float m[DRIVES + 1], bool disableDeltaMapping) const
{
DDA *lastQueuedMove = ddaRingAddPointer->GetPrevious();
for (size_t i = 0; i < DRIVES; i++)
{
if (i < AXES)
{
m[i] = lastQueuedMove->GetEndCoordinate(i, disableDeltaMapping);
}
else
{
m[i] = 0.0;
}
}
m[DRIVES] = currentFeedrate;
}
/*static*/ float Move::MotorEndpointToPosition(int32_t endpoint, size_t drive)
{
return ((float)(endpoint))/reprap.GetPlatform()->DriveStepsPerUnit(drive);
}
// Return the transformed machine coordinates
void Move::GetCurrentUserPosition(float m[DRIVES + 1], bool disableDeltaMapping) const
{
GetCurrentMachinePosition(m, disableDeltaMapping);
if (!disableDeltaMapping)
{
InverseTransform(m);
}
}
// Return the current live XYZ and extruder coordinates
// Interrupts are assumed enabled on entry, so do not call this from an ISR
void Move::LiveCoordinates(float m[DRIVES])
{
// The live coordinates and live endpoints are modified by the ISR, to be careful to get a self-consistent set of them
cpu_irq_disable();
if (liveCoordinatesValid)
{
// All coordinates are valid, so copy them across
memcpy(m, const_cast<const float *>(liveCoordinates), sizeof(m[0]) * DRIVES);
cpu_irq_enable();
}
else
{
// Only the extruder coordinates are valid, so we need to convert the motor endpoints to coordinates
memcpy(m + AXES, const_cast<const float *>(liveCoordinates + AXES), sizeof(m[0]) * (DRIVES - AXES));
int32_t tempEndPoints[AXES];
memcpy(tempEndPoints, const_cast<const int32_t*>(liveEndPoints), sizeof(tempEndPoints));
cpu_irq_enable();
MachineToEndPoint(tempEndPoints, m, AXES); // this is slow, so do it with interrupts enabled
// If the ISR has not updated the endpoints, store the live coordinates back so that we don't need to do it again
cpu_irq_disable();
if (memcmp(tempEndPoints, const_cast<const int32_t*>(liveEndPoints), sizeof(tempEndPoints)) == 0)
{
memcpy(const_cast<float *>(liveCoordinates), m, sizeof(m[0]) * AXES);
liveCoordinatesValid = true;
}
cpu_irq_enable();
}
InverseTransform(m);
}
// These are the actual numbers that we want to be the coordinates, so don't transform them.
// Interrupts are assumed enabled on entry, so do not call this from an ISR
void Move::SetLiveCoordinates(const float coords[DRIVES])
{
cpu_irq_disable();
for(size_t drive = 0; drive < DRIVES; drive++)
{
liveCoordinates[drive] = coords[drive];
}
liveCoordinatesValid = true;
EndPointToMachine(coords, const_cast<int32_t *>(liveEndPoints), AXES);
cpu_irq_enable();
}
void Move::SetXBedProbePoint(int index, float x)
{
if(index < 0 || index >= NUMBER_OF_PROBE_POINTS)
{
reprap.GetPlatform()->Message(BOTH_MESSAGE, "Z probe point X index out of range.\n");
return;
}
xBedProbePoints[index] = x;
probePointSet[index] |= xSet;
}
void Move::SetYBedProbePoint(int index, float y)
{
if(index < 0 || index >= NUMBER_OF_PROBE_POINTS)
{
reprap.GetPlatform()->Message(BOTH_MESSAGE, "Z probe point Y index out of range.\n");
return;
}
yBedProbePoints[index] = y;
probePointSet[index] |= ySet;
}
void Move::SetZBedProbePoint(int index, float z)
{
if(index < 0 || index >= NUMBER_OF_PROBE_POINTS)
{
reprap.GetPlatform()->Message(BOTH_MESSAGE, "Z probe point Z index out of range.\n");
return;
}
zBedProbePoints[index] = z;
probePointSet[index] |= zSet;
}
float Move::XBedProbePoint(int index) const
{
return xBedProbePoints[index];
}
float Move::YBedProbePoint(int index) const
{
return yBedProbePoints[index];
}
float Move::ZBedProbePoint(int index) const
{
return zBedProbePoints[index];
}
bool Move::AllProbeCoordinatesSet(int index) const
{
return probePointSet[index] == (xSet | ySet | zSet);
}
bool Move::XYProbeCoordinatesSet(int index) const
{
return (probePointSet[index] & xSet) && (probePointSet[index] & ySet);
}
int Move::NumberOfProbePoints() const
{
for(int i = 0; i < NUMBER_OF_PROBE_POINTS; i++)
{
if(!AllProbeCoordinatesSet(i))
{
return i;
}
}
return NUMBER_OF_PROBE_POINTS;
}
int Move::NumberOfXYProbePoints() const
{
for(int i = 0; i < NUMBER_OF_PROBE_POINTS; i++)
{
if(!XYProbeCoordinatesSet(i))
{
return i;
}
}
return NUMBER_OF_PROBE_POINTS;
}
// For debugging
void Move::PrintCurrentDda() const
{
if (currentDda != nullptr)
{
currentDda->DebugPrint();
reprap.GetPlatform()->GetLine()->Flush();
}
}
// End