This repository has been archived on 2025-02-01. You can view files and clone it, but cannot push or open issues or pull requests.
reprapfirmware-dc42/Platform.cpp
Adrian Bowyer 4104ff461b Version 0.65a. This allows the MAC address for the Duet to be set in config.g (q.v.),
which allows multiple Duets to be on the same network.
2014-05-07 18:17:44 +01:00

1357 lines
30 KiB
C++

/****************************************************************************************************
RepRapFirmware - Platform: RepRapPro Mendel with Prototype Arduino Due controller
Platform contains all the code and definitons to deal with machine-dependent things such as control
pins, bed area, number of extruders, tolerable accelerations and speeds and so on.
-----------------------------------------------------------------------------------------------------
Version 0.1
18 November 2012
Adrian Bowyer
RepRap Professional Ltd
http://reprappro.com
Licence: GPL
****************************************************************************************************/
#include "RepRapFirmware.h"
#define WINDOWED_SEND_PACKETS (2)
extern char _end;
extern "C" char *sbrk(int i);
const uint8_t memPattern = 0xA5;
// Arduino initialise and loop functions
// Put nothing in these other than calls to the RepRap equivalents
void setup()
{
reprap.Init();
//reprap.GetMove()->InterruptTime(); // Uncomment this line to time the interrupt routine on startup
// Fill the free memory with a pattern so that we can check for stack usage and memory corruption
char* heapend = sbrk(0);
register const char * stack_ptr asm ("sp");
while (heapend + 16 < stack_ptr)
{
*heapend++ = memPattern;
}
}
void loop()
{
reprap.Spin();
}
//*************************************************************************************************
Platform::Platform()
{
fileStructureInitialised = false;
line = new Line();
// Files
massStorage = new MassStorage(this);
for(int8_t i=0; i < MAX_FILES; i++)
files[i] = new FileStore(this);
network = new Network();
active = false;
}
//*******************************************************************************************************************
void Platform::Init()
{
byte i;
compatibility = me;
line->Init();
messageIndent = 0;
massStorage->Init();
for(i=0; i < MAX_FILES; i++)
files[i]->Init();
fileStructureInitialised = true;
mcpDuet.begin(); //only call begin once in the entire execution, this begins the I2C comms on that channel for all objects
mcpExpansion.setMCP4461Address(0x2E); //not required for mcpDuet, as this uses the default address
sysDir = SYS_DIR;
configFile = CONFIG_FILE;
ipAddress = IP_ADDRESS;
netMask = NET_MASK;
gateWay = GATE_WAY;
macAddress = MAC_ADDRESS;
// DRIVES
stepPins = STEP_PINS;
directionPins = DIRECTION_PINS;
enablePins = ENABLE_PINS;
disableDrives = DISABLE_DRIVES;
lowStopPins = LOW_STOP_PINS;
highStopPins = HIGH_STOP_PINS;
maxFeedrates = MAX_FEEDRATES;
accelerations = ACCELERATIONS;
driveStepsPerUnit = DRIVE_STEPS_PER_UNIT;
instantDvs = INSTANT_DVS;
potWipes = POT_WIPES;
senseResistor = SENSE_RESISTOR;
maxStepperDigipotVoltage = MAX_STEPPER_DIGIPOT_VOLTAGE;
numMixingDrives = NUM_MIXING_DRIVES;
// Z PROBE
zProbePin = Z_PROBE_PIN;
zProbeModulationPin = Z_PROBE_MOD_PIN;
zProbeType = 0; // Default is to use the switch
zProbeADValue = Z_PROBE_AD_VALUE;
zProbeStopHeight = Z_PROBE_STOP_HEIGHT;
InitZProbe();
// AXES
axisLengths = AXIS_LENGTHS;
homeFeedrates = HOME_FEEDRATES;
headOffsets = HEAD_OFFSETS;
// HEATERS - Bed is assumed to be the first
tempSensePins = TEMP_SENSE_PINS;
heatOnPins = HEAT_ON_PINS;
thermistorBetas = THERMISTOR_BETAS;
thermistorSeriesRs = THERMISTOR_SERIES_RS;
thermistorInfRs = THERMISTOR_25_RS;
usePID = USE_PID;
pidKis = PID_KIS;
pidKds = PID_KDS;
pidKps = PID_KPS;
fullPidBand = FULL_PID_BAND;
pidMin = PID_MIN;
pidMax = PID_MAX;
dMix = D_MIX;
heatSampleTime = HEAT_SAMPLE_TIME;
standbyTemperatures = STANDBY_TEMPERATURES;
activeTemperatures = ACTIVE_TEMPERATURES;
coolingFanPin = COOLING_FAN_PIN;
//turnHeatOn = HEAT_ON;
webDir = WEB_DIR;
gcodeDir = GCODE_DIR;
tempDir = TEMP_DIR;
/*
FIXME Nasty having to specify individually if a pin is arduino or not.
requires a unified variant file. If implemented this would be much better
to allow for different hardware in the future
*/
for(i = 0; i < DRIVES; i++)
{
if(stepPins[i] >= 0)
{
if(i == E0_DRIVE || i == E3_DRIVE) //STEP_PINS {14, 25, 5, X2, 41, 39, X4, 49}
pinModeNonDue(stepPins[i], OUTPUT);
else
pinMode(stepPins[i], OUTPUT);
}
if(directionPins[i] >= 0)
{
if(i == E0_DRIVE) //DIRECTION_PINS {15, 26, 4, X3, 35, 53, 51, 48}
pinModeNonDue(directionPins[i], OUTPUT);
else
pinMode(directionPins[i], OUTPUT);
}
if(enablePins[i] >= 0)
{
if(i == Z_AXIS || i==E0_DRIVE || i==E2_DRIVE) //ENABLE_PINS {29, 27, X1, X0, 37, X8, 50, 47}
pinModeNonDue(enablePins[i], OUTPUT);
else
pinMode(enablePins[i], OUTPUT);
}
Disable(i);
driveEnabled[i] = false;
}
for(i = 0; i < DRIVES; i++)
{
if(lowStopPins[i] >= 0)
{
pinMode(lowStopPins[i], INPUT);
digitalWrite(lowStopPins[i], HIGH); // Turn on pullup
}
if(highStopPins[i] >= 0)
{
pinMode(highStopPins[i], INPUT);
digitalWrite(highStopPins[i], HIGH); // Turn on pullup
}
}
for(i = 0; i < HEATERS; i++)
{
if(heatOnPins[i] >= 0)
if(i == E0_HEATER || i==E1_HEATER) //HEAT_ON_PINS {6, X5, X7, 7, 8, 9}
pinModeNonDue(heatOnPins[i], OUTPUT);
else
pinMode(heatOnPins[i], OUTPUT);
thermistorInfRs[i] = ( thermistorInfRs[i]*exp(-thermistorBetas[i]/(25.0 - ABS_ZERO)) );
tempSum[i] = 0;
}
if(coolingFanPin >= 0)
{
//pinModeNonDue(coolingFanPin, OUTPUT); //not required as analogwrite does this automatically
analogWriteNonDue(coolingFanPin, 255); //inverse logic for Duet v0.6 this turns it off
}
InitialiseInterrupts();
addToTime = 0.0;
lastTimeCall = 0;
lastTime = Time();
longWait = lastTime;
active = true;
}
void Platform::InitZProbe()
{
zModOnThisTime = true;
zProbeOnSum = 0;
zProbeOffSum = 0;
if (zProbeType == 2)
{
pinMode(zProbeModulationPin, OUTPUT);
digitalWrite(zProbeModulationPin, HIGH); // enable the IR LED
}
}
void Platform::StartNetwork()
{
network->Init();
}
void Platform::Spin()
{
if(!active)
return;
network->Spin();
line->Spin();
if(Time() - lastTime < POLL_TIME)
return;
PollZHeight();
PollTemperatures();
lastTime = Time();
ClassReport("Platform", longWait);
}
//*****************************************************************************************************************
// Interrupts
void TC3_Handler()
{
TC_GetStatus(TC1, 0);
reprap.Interrupt();
}
void Platform::InitialiseInterrupts()
{
pmc_set_writeprotect(false);
pmc_enable_periph_clk((uint32_t)TC3_IRQn);
TC_Configure(TC1, 0, TC_CMR_WAVE | TC_CMR_WAVSEL_UP_RC | TC_CMR_TCCLKS_TIMER_CLOCK4);
TC1->TC_CHANNEL[0].TC_IER=TC_IER_CPCS;
TC1->TC_CHANNEL[0].TC_IDR=~TC_IER_CPCS;
SetInterrupt(STANDBY_INTERRUPT_RATE);
}
void Platform::DisableInterrupts()
{
NVIC_DisableIRQ(TC3_IRQn);
}
//*************************************************************************************************
void Platform::Diagnostics()
{
Message(HOST_MESSAGE, "Platform Diagnostics:\n");
}
// Print memory stats to USB and append them to the current webserver reply
void Platform::PrintMemoryUsage()
{
const char *ramstart=(char *)0x20070000;
const char *ramend=(char *)0x20088000;
const char *heapend=sbrk(0);
register const char * stack_ptr asm ("sp");
const struct mallinfo mi = mallinfo();
Message(HOST_MESSAGE, "\n");
Message(HOST_MESSAGE, "Memory usage:\n\n");
snprintf(scratchString, STRING_LENGTH, "Program static ram used: %d\n", &_end - ramstart);
reprap.GetWebserver()->AppendReply(scratchString);
Message(HOST_MESSAGE, scratchString);
snprintf(scratchString, STRING_LENGTH, "Dynamic ram used: %d\n", mi.uordblks);
reprap.GetWebserver()->AppendReply(scratchString);
Message(HOST_MESSAGE, scratchString);
snprintf(scratchString, STRING_LENGTH, "Recycled dynamic ram: %d\n", mi.fordblks);
reprap.GetWebserver()->AppendReply(scratchString);
Message(HOST_MESSAGE, scratchString);
snprintf(scratchString, STRING_LENGTH, "Current stack ram used: %d\n", ramend - stack_ptr);
reprap.GetWebserver()->AppendReply(scratchString);
Message(HOST_MESSAGE, scratchString);
const char* stack_lwm = heapend;
while (stack_lwm < stack_ptr && *stack_lwm == memPattern)
{
++stack_lwm;
}
snprintf(scratchString, STRING_LENGTH, "Maximum stack ram used: %d\n", ramend - stack_lwm);
reprap.GetWebserver()->AppendReply(scratchString);
Message(HOST_MESSAGE, scratchString);
snprintf(scratchString, STRING_LENGTH, "Never used ram: %d\n", stack_lwm - heapend);
reprap.GetWebserver()->AppendReply(scratchString);
Message(HOST_MESSAGE, scratchString);
}
void Platform::ClassReport(char* className, float &lastTime)
{
if(!reprap.Debug())
return;
if(Time() - lastTime < LONG_TIME)
return;
lastTime = Time();
snprintf(scratchString, STRING_LENGTH, "Class %s spinning.\n", className);
Message(HOST_MESSAGE, scratchString);
}
//===========================================================================
//=============================Thermal Settings ============================
//===========================================================================
// See http://en.wikipedia.org/wiki/Thermistor#B_or_.CE.B2_parameter_equation
// BETA is the B value
// RS is the value of the series resistor in ohms
// R_INF is R0.exp(-BETA/T0), where R0 is the thermistor resistance at T0 (T0 is in kelvin)
// Normally T0 is 298.15K (25 C). If you write that expression in brackets in the #define the compiler
// should compute it for you (i.e. it won't need to be calculated at run time).
// If the A->D converter has a range of 0..1023 and the measured voltage is V (between 0 and 1023)
// then the thermistor resistance, R = V.RS/(1024 - V)
// and the temperature, T = BETA/ln(R/R_INF)
// To get degrees celsius (instead of kelvin) add -273.15 to T
//#define THERMISTOR_R_INFS ( THERMISTOR_25_RS*exp(-THERMISTOR_BETAS/298.15) ) // Compute in Platform constructor
// Result is in degrees celsius
float Platform::GetTemperature(int8_t heater)
{
// If the ADC reading is N then for an ideal ADC, the input voltage is at least N/(AD_RANGE + 1) and less than (N + 1)/(AD_RANGE + 1), times the analog reference.
// So we add 0.5 to to the reading to get a better estimate of the input.
int rawTemp = tempSum[heater]/NUMBER_OF_A_TO_D_READINGS_AVERAGED; //GetRawTemperature(heater);
// First, recognise the special case of thermistor disconnected.
// if (rawTemp == AD_RANGE)
// {
// // Thermistor is disconnected
// return ABS_ZERO;
// }
float r = (float)rawTemp + 0.5;
r = ABS_ZERO + thermistorBetas[heater]/log( (r*thermistorSeriesRs[heater]/((AD_RANGE + 1) - r))/thermistorInfRs[heater] );
return r;
}
// power is a fraction in [0,1]
void Platform::SetHeater(int8_t heater, const float& power)
{
if(heatOnPins[heater] < 0)
return;
byte p = (byte)(255.0*fmin(1.0, fmax(0.0, power)));
if(HEAT_ON == 0)
p = 255 - p;
if(heater == E0_HEATER || heater == E1_HEATER) //HEAT_ON_PINS {6, X5, X7, 7, 8, 9}
analogWriteNonDue(heatOnPins[heater], p);
else
analogWrite(heatOnPins[heater], p);
}
EndStopHit Platform::Stopped(int8_t drive)
{
if(zProbeType > 0)
{ // Z probe is used for both X and Z.
if(drive != Y_AXIS)
{
if(ZProbe() > zProbeADValue)
return lowHit;
else
return noStop;
}
}
if(lowStopPins[drive] >= 0)
{
if(digitalRead(lowStopPins[drive]) == ENDSTOP_HIT)
return lowHit;
}
if(highStopPins[drive] >= 0)
{
if(digitalRead(highStopPins[drive]) == ENDSTOP_HIT)
return highHit;
}
return noStop;
}
/*********************************************************************************
Files & Communication
*/
MassStorage::MassStorage(Platform* p)
{
platform = p;
}
void MassStorage::Init()
{
hsmciPinsinit();
// Initialize SD MMC stack
sd_mmc_init();
delay(20);
int sdPresentCount = 0;
while ((CTRL_NO_PRESENT == sd_mmc_check(0)) && (sdPresentCount < 5))
{
//platform->Message(HOST_MESSAGE, "Please plug in the SD card.\n");
//delay(1000);
sdPresentCount++;
}
if(sdPresentCount >= 5)
{
platform->Message(HOST_MESSAGE, "Can't find the SD card.\n");
return;
}
//print card info
// SerialUSB.print("sd_mmc_card->capacity: ");
// SerialUSB.print(sd_mmc_get_capacity(0));
// SerialUSB.print(" bytes\n");
// SerialUSB.print("sd_mmc_card->clock: ");
// SerialUSB.print(sd_mmc_get_bus_clock(0));
// SerialUSB.print(" Hz\n");
// SerialUSB.print("sd_mmc_card->bus_width: ");
// SerialUSB.println(sd_mmc_get_bus_width(0));
memset(&fileSystem, 0, sizeof(FATFS));
//f_mount (LUN_ID_SD_MMC_0_MEM, NULL);
//int mounted = f_mount(LUN_ID_SD_MMC_0_MEM, &fileSystem);
int mounted = f_mount(0, &fileSystem);
if (mounted != FR_OK)
{
platform->Message(HOST_MESSAGE, "Can't mount filesystem 0: code ");
snprintf(scratchString, STRING_LENGTH, "%d", mounted);
platform->Message(HOST_MESSAGE, scratchString);
platform->Message(HOST_MESSAGE, "\n");
}
}
char* MassStorage::CombineName(const char* directory, const char* fileName)
{
int out = 0;
int in = 0;
// scratchString[out] = '/';
// out++;
if(directory != NULL)
{
//if(directory[in] == '/')
// in++;
while(directory[in] != 0 && directory[in] != '\n')// && directory[in] != '/')
{
scratchString[out] = directory[in];
in++;
out++;
if(out >= STRING_LENGTH)
{
platform->Message(HOST_MESSAGE, "CombineName() buffer overflow.");
out = 0;
}
}
}
//scratchString[out] = '/';
// out++;
in = 0;
while(fileName[in] != 0 && fileName[in] != '\n')// && fileName[in] != '/')
{
scratchString[out] = fileName[in];
in++;
out++;
if(out >= STRING_LENGTH)
{
platform->Message(HOST_MESSAGE, "CombineName() buffer overflow.");
out = 0;
}
}
scratchString[out] = 0;
return scratchString;
}
// List the flat files in a directory. No sub-directories or recursion.
char* MassStorage::FileList(const char* directory, bool fromLine)
{
// File dir, entry;
DIR dir;
FILINFO entry;
FRESULT res;
char loc[64];
int len = 0;
char fileListBracket = FILE_LIST_BRACKET;
char fileListSeparator = FILE_LIST_SEPARATOR;
if(fromLine)
{
if(platform->Emulating() == marlin)
{
fileListBracket = 0;
fileListSeparator = '\n';
}
}
len = strlen(directory);
strncpy(loc,directory,len-1);
loc[len - 1 ] = 0;
// if(reprap.debug()) {
// platform->Message(HOST_MESSAGE, "Opening: ");
// platform->Message(HOST_MESSAGE, loc);
// platform->Message(HOST_MESSAGE, "\n");
// }
res = f_opendir(&dir,loc);
if(res == FR_OK)
{
// if(reprap.debug()) {
// platform->Message(HOST_MESSAGE, "Directory open\n");
// }
int p = 0;
// int q;
int foundFiles = 0;
f_readdir(&dir,0);
while((f_readdir(&dir,&entry) == FR_OK) && (foundFiles < MAX_FILES))
{
foundFiles++;
if(strlen(entry.fname) > 0)
{
int q = 0;
if(fileListBracket)
fileList[p++] = fileListBracket;
while(entry.fname[q])
{
fileList[p++] = entry.fname[q];
//SerialUSB.print(entry.fname[q]);
q++;
if(p >= FILE_LIST_LENGTH - 10) // Caution...
{
platform->Message(HOST_MESSAGE, "FileList - directory: ");
platform->Message(HOST_MESSAGE, directory);
platform->Message(HOST_MESSAGE, " has too many files!\n");
return "";
}
}
if(fileListBracket)
fileList[p++] = fileListBracket;
fileList[p++] = fileListSeparator;
}
}
if(foundFiles <= 0)
return "NONE";
fileList[--p] = 0; // Get rid of the last separator
return fileList;
}
return "";
}
// Delete a file
bool MassStorage::Delete(const char* directory, const char* fileName)
{
char* location = platform->GetMassStorage()->CombineName(directory, fileName);
if( f_unlink (location) != FR_OK)
{
platform->Message(HOST_MESSAGE, "Can't delete file ");
platform->Message(HOST_MESSAGE, location);
platform->Message(HOST_MESSAGE, "\n");
return false;
}
return true;
}
//------------------------------------------------------------------------------------------------
FileStore::FileStore(Platform* p)
{
platform = p;
}
void FileStore::Init()
{
bufferPointer = 0;
inUse = false;
writing = false;
lastBufferEntry = 0;
}
// Open a local file (for example on an SD card).
// This is protected - only Platform can access it.
bool FileStore::Open(const char* directory, const char* fileName, bool write)
{
char* location = platform->GetMassStorage()->CombineName(directory, fileName);
writing = write;
lastBufferEntry = FILE_BUF_LEN - 1;
FRESULT openReturn;
if(writing)
{
openReturn = f_open(&file, location, FA_CREATE_ALWAYS | FA_WRITE);
if (openReturn != FR_OK)
{
platform->Message(HOST_MESSAGE, "Can't open ");
platform->Message(HOST_MESSAGE, location);
platform->Message(HOST_MESSAGE, " to write to. Error code: ");
snprintf(scratchString, STRING_LENGTH, "%d", openReturn);
platform->Message(HOST_MESSAGE, scratchString);
platform->Message(HOST_MESSAGE, "\n");
return false;
}
bufferPointer = 0;
} else
{
openReturn = f_open(&file, location, FA_OPEN_EXISTING | FA_READ);
if (openReturn != FR_OK)
{
platform->Message(HOST_MESSAGE, "Can't open ");
platform->Message(HOST_MESSAGE, location);
platform->Message(HOST_MESSAGE, " to read from. Error code: ");
snprintf(scratchString, STRING_LENGTH, "%d", openReturn);
platform->Message(HOST_MESSAGE, scratchString);
platform->Message(HOST_MESSAGE, "\n");
return false;
}
bufferPointer = FILE_BUF_LEN;
}
inUse = true;
return true;
}
void FileStore::Close()
{
if(writing)
WriteBuffer();
f_close(&file);
platform->ReturnFileStore(this);
inUse = false;
writing = false;
lastBufferEntry = 0;
}
void FileStore::GoToEnd()
{
if(!inUse)
{
platform->Message(HOST_MESSAGE, "Attempt to seek on a non-open file.\n");
return;
}
unsigned long e = Length();
f_lseek(&file, e);
}
unsigned long FileStore::Length()
{
if(!inUse)
{
platform->Message(HOST_MESSAGE, "Attempt to size non-open file.\n");
return 0;
}
return file.fsize;
return 0;
}
int8_t FileStore::Status()
{
if(!inUse)
return nothing;
if(lastBufferEntry == FILE_BUF_LEN)
return byteAvailable;
if(bufferPointer < lastBufferEntry)
return byteAvailable;
return nothing;
}
void FileStore::ReadBuffer()
{
FRESULT readStatus;
readStatus = f_read(&file, buf, FILE_BUF_LEN, &lastBufferEntry); // Read a chunk of file
if (readStatus)
{
platform->Message(HOST_MESSAGE, "Error reading file.\n");
}
bufferPointer = 0;
}
bool FileStore::Read(char& b)
{
if(!inUse)
{
platform->Message(HOST_MESSAGE, "Attempt to read from a non-open file.\n");
return false;
}
if(bufferPointer >= FILE_BUF_LEN)
ReadBuffer();
if(bufferPointer >= lastBufferEntry)
{
b = 0; // Good idea?
return false;
}
b = (char)buf[bufferPointer];
bufferPointer++;
return true;
}
void FileStore::WriteBuffer()
{
FRESULT writeStatus;
writeStatus = f_write(&file, buf, bufferPointer, &lastBufferEntry);
if((writeStatus != FR_OK) || (lastBufferEntry != bufferPointer))
{
platform->Message(HOST_MESSAGE, "Error writing file. Disc may be full.\n");
}
bufferPointer = 0;
}
void FileStore::Write(char b)
{
if(!inUse)
{
platform->Message(HOST_MESSAGE, "Attempt to write byte to a non-open file.\n");
return;
}
buf[bufferPointer] = b;
bufferPointer++;
if(bufferPointer >= FILE_BUF_LEN)
WriteBuffer();
}
void FileStore::Write(const char* b)
{
if(!inUse)
{
platform->Message(HOST_MESSAGE, "Attempt to write string to a non-open file.\n");
return;
}
int i = 0;
while(b[i])
Write(b[i++]);
}
//-----------------------------------------------------------------------------------------------------
FileStore* Platform::GetFileStore(const char* directory, const char* fileName, bool write)
{
FileStore* result = NULL;
if(!fileStructureInitialised)
return NULL;
for(int i = 0; i < MAX_FILES; i++)
if(!files[i]->inUse)
{
files[i]->inUse = true;
if(files[i]->Open(directory, fileName, write))
return files[i];
else
{
files[i]->inUse = false;
return NULL;
}
}
Message(HOST_MESSAGE, "Max open file count exceeded.\n");
return NULL;
}
MassStorage* Platform::GetMassStorage()
{
return massStorage;
}
void Platform::ReturnFileStore(FileStore* fs)
{
for(int i = 0; i < MAX_FILES; i++)
if(files[i] == fs)
{
files[i]->inUse = false;
return;
}
}
void Platform::Message(char type, const char* message)
{
switch(type)
{
case FLASH_LED:
// Message that is to flash an LED; the next two bytes define
// the frequency and M/S ratio.
break;
case DISPLAY_MESSAGE:
// Message that is to appear on a local display; \f and \n should be supported.
case HOST_MESSAGE:
default:
// FileStore* m = GetFileStore(GetWebDir(), MESSAGE_FILE, true);
// if(m != NULL)
// {
// m->GoToEnd();
// m->Write(message);
// m->Close();
// } else
// line->Write("Can't open message file.\n");
for(uint8_t i = 0; i < messageIndent; i++)
line->Write(' ');
line->Write(message);
}
}
void Platform::SetPidValues(size_t heater, float pVal, float iVal, float dVal)
{
if (heater < HEATERS)
{
pidKps[heater] = pVal;
pidKis[heater] = iVal / heatSampleTime;
pidKds[heater] = dVal * heatSampleTime;
}
}
//***************************************************************************************************
// Serial/USB class
Line::Line()
{
}
void Line::Init()
{
getIndex = 0;
numChars = 0;
// alternateInput = NULL;
// alternateOutput = NULL;
SerialUSB.begin(BAUD_RATE);
//while (!SerialUSB.available());
}
void Line::Spin()
{
// Read the serial data in blocks to avoid excessive flow control
if (numChars <= lineBufsize/2)
{
int16_t target = SerialUSB.available() + (int16_t)numChars;
if (target > lineBufsize)
{
target = lineBufsize;
}
while ((int16_t)numChars < target)
{
int incomingByte = SerialUSB.read();
if (incomingByte < 0) break;
buffer[(getIndex + numChars) % lineBufsize] = (char)incomingByte;
++numChars;
}
}
}
//***************************************************************************************************
// Network/Ethernet class
// C calls to interface with LWIP (http://savannah.nongnu.org/projects/lwip/)
// These are implemented in, and called from, a modified version of httpd.c
// in the network directory.
extern "C"
{
//void ResetEther();
// Transmit data to the Network
void RepRapNetworkSendOutput(char* data, int length, void* pbuf, void* pcb, void* hs);
// When lwip releases storage, set the local copy of the pointer to 0 to stop
// it being used again.
void RepRapNetworkInputBufferReleased(void* pb)
{
reprap.GetPlatform()->GetNetwork()->InputBufferReleased(pb);
}
void RepRapNetworkConnectionError(void* h)
{
reprap.GetPlatform()->GetNetwork()->ConnectionError(h);
reprap.GetWebserver()->ConnectionError();
}
// Called to put out a message via the RepRap firmware.
void RepRapNetworkMessage(char* s)
{
reprap.GetPlatform()->Message(HOST_MESSAGE, s);
}
// Called to push data into the RepRap firmware.
void RepRapNetworkReceiveInput(char* data, int length, void* pbuf, void* pcb, void* hs)
{
reprap.GetPlatform()->GetNetwork()->ReceiveInput(data, length, pbuf, pcb, hs);
}
// Called when transmission of outgoing data is complete to allow
// the RepRap firmware to write more.
void RepRapNetworkSentPacketAcknowledged()
{
reprap.GetPlatform()->GetNetwork()->SentPacketAcknowledged();
}
bool RepRapNetworkHasALiveClient()
{
return reprap.GetPlatform()->GetNetwork()->Status() & clientLive;
}
// This one is in ethernetif.c
void RepRapNetworkSetMACAddress(const u8_t mac[]);
} // extern "C"
Network::Network()
{
active = false;
ethPinsInit();
//ResetEther();
// Construct the ring buffer
netRingAddPointer = new NetRing(NULL);
netRingGetPointer = netRingAddPointer;
for(int8_t i = 1; i < HTTP_STATE_SIZE; i++)
netRingGetPointer = new NetRing(netRingGetPointer);
netRingAddPointer->SetNext(netRingGetPointer);
}
// Reset the network to its disconnected and ready state.
void Network::Reset()
{
//reprap.GetPlatform()->Message(HOST_MESSAGE, "Reset.\n");
inputPointer = 0;
inputLength = -1;
outputPointer = 0;
writeEnabled = false;
closePending = false;
status = nothing;
sentPacketsOutstanding = 0;
}
void Network::CleanRing()
{
for(int8_t i = 0; i <= HTTP_STATE_SIZE; i++)
{
netRingGetPointer->Free();
netRingGetPointer = netRingGetPointer->Next();
}
netRingAddPointer = netRingGetPointer;
}
void Network::Init()
{
CleanRing();
Reset();
RepRapNetworkSetMACAddress(reprap.GetPlatform()->MACAddress());
init_ethernet(reprap.GetPlatform()->IPAddress(), reprap.GetPlatform()->NetMask(), reprap.GetPlatform()->GateWay());
active = true;
sentPacketsOutstanding = 0;
windowedSendPackets = WINDOWED_SEND_PACKETS;
}
void Network::Spin()
{
if(!active)
{
//ResetEther();
return;
}
// Keep the Ethernet running
ethernet_task();
// Anything come in from the network to act on?
if(!netRingGetPointer->Active())
return;
// Finished reading the active ring element?
if(!netRingGetPointer->ReadFinished())
{
// No - Finish reading any data that's been received.
if(inputPointer < inputLength)
return;
// Haven't started reading it yet - set that up.
inputPointer = 0;
inputLength = netRingGetPointer->Length();
inputBuffer = netRingGetPointer->Data();
}
}
// Webserver calls this to read bytes that have come in from the network
bool Network::Read(char& b)
{
if(inputPointer >= inputLength)
{
inputLength = -1;
inputPointer = 0;
netRingGetPointer->SetReadFinished(); // Past tense...
SetWriteEnable(true);
//reprap.GetPlatform()->Message(HOST_MESSAGE, "Network - data read.\n");
return false;
}
b = inputBuffer[inputPointer];
inputPointer++;
return true;
}
// Webserver calls this to write bytes that need to go out to the network
void Network::Write(char b)
{
// Check for horrible things...
if(!CanWrite())
{
reprap.GetPlatform()->Message(HOST_MESSAGE, "Network::Write(char b) - Attempt to write when disabled.\n");
return;
}
if(outputPointer >= ARRAY_SIZE(outputBuffer))
{
reprap.GetPlatform()->Message(HOST_MESSAGE, "Network::Write(char b) - Output buffer overflow! \n");
return;
}
// Add the byte to the buffer
outputBuffer[outputPointer] = b;
outputPointer++;
// Buffer full? If so, send it.
if(outputPointer == ARRAY_SIZE(outputBuffer))
{
if(windowedSendPackets > 1)
++sentPacketsOutstanding;
else
SetWriteEnable(false); // Stop further writing from Webserver until the network tells us that this has gone
RepRapNetworkSendOutput(outputBuffer, outputPointer, netRingGetPointer->Pbuf(), netRingGetPointer->Pcb(), netRingGetPointer->Hs());
outputPointer = 0;
}
}
void Network::InputBufferReleased(void* pb)
{
if(netRingGetPointer->Pbuf() != pb)
{
reprap.GetPlatform()->Message(HOST_MESSAGE, "Network::InputBufferReleased() - Pointers don't match!\n");
return;
}
netRingGetPointer->ReleasePbuf();
}
void Network::ConnectionError(void* h)
{
// h points to an http state block that the caller is about to release, so we need to stop referring to it.
// The state block is usually but not always in use by the current http request being processed, in which case we abandon the current request.
if (netRingGetPointer != netRingAddPointer && netRingGetPointer->Hs() == h)
{
netRingGetPointer->Free();
netRingGetPointer = netRingGetPointer->Next();
}
// Reset the network layer. In particular, this clears the output buffer to make sure nothing more gets sent,
// and sets status to 'nothing' so that we can accept another connection attempt.
Reset();
}
void Network::ReceiveInput(char* data, int length, void* pbuf, void* pcb, void* hs)
{
status = clientLive;
if(netRingAddPointer->Active())
{
reprap.GetPlatform()->Message(HOST_MESSAGE, "Network::ReceiveInput() - Ring buffer full!\n");
return;
}
netRingAddPointer->Init(data, length, pbuf, pcb, hs);
netRingAddPointer = netRingAddPointer->Next();
//reprap.GetPlatform()->Message(HOST_MESSAGE, "Network - input received.\n");
}
bool Network::CanWrite() const
{
if(windowedSendPackets > 1)
return writeEnabled && sentPacketsOutstanding < windowedSendPackets;
return writeEnabled;
}
void Network::SetWriteEnable(bool enable)
{
writeEnabled = enable;
if(!writeEnabled)
return;
if(closePending)
Close();
}
void Network::SentPacketAcknowledged()
{
if(windowedSendPackets > 1)
{
if (sentPacketsOutstanding != 0)
{
--sentPacketsOutstanding;
}
if (closePending && sentPacketsOutstanding == 0)
{
Close();
}
} else
SetWriteEnable(true);
}
// This is not called for data, only for internally-
// generated short strings at the start of a transmission,
// so it should never overflow the buffer (which is checked
// anyway).
void Network::Write(const char* s)
{
int i = 0;
while(s[i])
Write(s[i++]);
}
void Network::Close()
{
if(Status() && clientLive)
{
if(outputPointer > 0)
{
SetWriteEnable(false);
RepRapNetworkSendOutput(outputBuffer, outputPointer, netRingGetPointer->Pbuf(), netRingGetPointer->Pcb(), netRingGetPointer->Hs());
outputPointer = 0;
closePending = true;
return;
}
RepRapNetworkSendOutput((char*)NULL, 0, netRingGetPointer->Pbuf(), netRingGetPointer->Pcb(), netRingGetPointer->Hs());
netRingGetPointer->Free();
netRingGetPointer = netRingGetPointer->Next();
//reprap.GetPlatform()->Message(HOST_MESSAGE, "Network - output sent and closed.\n");
} else
reprap.GetPlatform()->Message(HOST_MESSAGE, "Network::Close() - Attempt to close a closed connection!\n");
closePending = false;
status = nothing;
//Reset();
}
int8_t Network::Status() const
{
if(inputPointer >= inputLength)
return status;
return status | clientConnected | byteAvailable;
}
NetRing::NetRing(NetRing* n)
{
next = n;
Free();
}
void NetRing::Free()
{
pbuf = 0;
pcb = 0;
hs = 0;
data = "";
length = 0;
read = false;
active = false;
}
bool NetRing::Init(char* d, int l, void* pb, void* pc, void* h)
{
if(active)
return false;
pbuf = pb;
pcb = pc;
hs = h;
data = d;
length = l;
read = false;
active = true;
return true;
}
NetRing* NetRing::Next()
{
return next;
}
char* NetRing::Data()
{
return data;
}
int NetRing::Length()
{
return length;
}
bool NetRing::ReadFinished()
{
return read;
}
void NetRing::SetReadFinished()
{
read = true;
}
bool NetRing::Active()
{
return active;
}
void NetRing::SetNext(NetRing* n)
{
next = n;
}
void* NetRing::Pbuf()
{
return pbuf;
}
void NetRing::ReleasePbuf()
{
pbuf = 0;
}
void* NetRing::Pcb()
{
return pcb;
}
void* NetRing::Hs()
{
return hs;
}
void NetRing::ReleaseHs()
{
hs = 0;
}