This repository has been archived on 2025-02-01. You can view files and clone it, but cannot push or open issues or pull requests.
reprapfirmware-dc42/Heat.cpp
David Crocker 2a818bcfc0 Version 0.78h
Added a few more improvements from RRP's dev branch
Corrected M201 output
Added a few more minor fixes
2014-08-03 11:17:48 +01:00

256 lines
6.8 KiB
C++

/****************************************************************************************************
RepRapFirmware - Heat
This is all the code to deal with heat and temperature.
-----------------------------------------------------------------------------------------------------
Version 0.1
18 November 2012
Adrian Bowyer
RepRap Professional Ltd
http://reprappro.com
Licence: GPL
****************************************************************************************************/
#include "RepRapFirmware.h"
Heat::Heat(Platform* p, GCodes* g)
{
platform = p;
gCodes = g;
for(int8_t heater=0; heater < HEATERS; heater++)
pids[heater] = new PID(platform, heater);
active = false;
}
void Heat::Init()
{
for(int8_t heater=0; heater < HEATERS; heater++)
{
pids[heater]->Init();
}
lastTime = platform->Time();
longWait = lastTime;
active = true;
}
void Heat::Exit()
{
for(int8_t heater=0; heater < HEATERS; heater++)
{
pids[heater]->SwitchOff();
}
platform->Message(HOST_MESSAGE, "Heat class exited.\n");
active = false;
}
void Heat::Spin()
{
if(!active)
return;
float t = platform->Time();
if(t - lastTime < platform->HeatSampleTime())
return;
lastTime = t;
for(int8_t heater=0; heater < HEATERS; heater++)
{
pids[heater]->Spin();
}
platform->ClassReport("Heat", longWait);
}
void Heat::Diagnostics()
{
platform->AppendMessage(BOTH_MESSAGE, "Heat Diagnostics:\n");
for(int8_t heater=0; heater < HEATERS; heater++)
{
if (pids[heater]->active)
{
snprintf(scratchString, STRING_LENGTH, "Heater %d: I-accumulator = %.1f\n", heater, pids[heater]->temp_iState);
platform->AppendMessage(BOTH_MESSAGE, scratchString);
}
}
}
bool Heat::AllHeatersAtSetTemperatures(bool includingBed) const
{
for(int8_t heater = (includingBed) ? 0 : 1; heater < HEATERS; heater++)
{
if(!HeaterAtSetTemperature(heater))
return false;
}
return true;
}
//query an individual heater
bool Heat::HeaterAtSetTemperature(int8_t heater) const
{
if(pids[heater]->SwitchedOff()) // If it hasn't anything to do, it must be right wherever it is...
return true;
float dt = GetTemperature(heater);
float target = (pids[heater]->Active()) ? GetActiveTemperature(heater) : GetStandbyTemperature(heater);
return (target < TEMPERATURE_LOW_SO_DONT_CARE) || (fabs(dt - target) <= TEMPERATURE_CLOSE_ENOUGH);
}
//******************************************************************************************************
PID::PID(Platform* p, int8_t h)
{
platform = p;
heater = h;
}
void PID::Init()
{
platform->SetHeater(heater, 0.0);
temperature = platform->GetTemperature(heater);
activeTemperature = ABS_ZERO;
standbyTemperature = ABS_ZERO;
lastTemperature = temperature;
temp_iState = 0.0;
badTemperatureCount = 0;
temperatureFault = false;
active = false; // Default to standby temperature
switchedOff = true;
heatingUp = false;
}
void PID::SwitchOn()
{
// if(reprap.Debug())
// {
// snprintf(scratchString, STRING_LENGTH, "Heater %d switched on.\n", heater);
// platform->Message(BOTH_MESSAGE, scratchString);
// }
switchedOff = false;
}
void PID::Spin()
{
// Always know our temperature, regardless of whether we have been switched on or not
temperature = platform->GetTemperature(heater);
// If we're not switched on, or there's a fault, turn the power off and go home.
// If we're not switched on, then nothing is using us. This probably means that
// we don't even have a thermistor connected. So don't even check for faults if we
// are not switched on. This is safe, as the next bit of code always turns our
// heater off in that case anyway.
if(temperatureFault || switchedOff)
{
platform->SetHeater(heater, 0.0); // Make sure...
return;
}
// We are switched on. Check for faults. Temperature silly-low or silly-high mean open-circuit
// or shorted thermistor respectively.
if(temperature < BAD_LOW_TEMPERATURE || temperature > BAD_HIGH_TEMPERATURE)
{
badTemperatureCount++;
if(badTemperatureCount > MAX_BAD_TEMPERATURE_COUNT)
{
platform->SetHeater(heater, 0.0);
temperatureFault = true;
switchedOff = true;
snprintf(scratchString, STRING_LENGTH, "Temperature fault on heater %d, T = %.1f\n", heater, temperature);
platform->Message(BOTH_MESSAGE, scratchString);
reprap.FlagTemperatureFault(heater);
}
}
else
{
badTemperatureCount = 0;
}
// Now check how long it takes to warm up. If too long, maybe the thermistor is not in contact with the heater
if(heatingUp && heater != HOT_BED) // FIXME - also check bed warmup time?
{
float tmp = standbyTemperature;
if(active)
{
tmp = activeTemperature;
}
tmp -= TEMPERATURE_CLOSE_ENOUGH;
if(temperature < tmp)
{
float tim = platform->Time() - timeSetHeating;
if(tim > TIME_TO_HOT)
{
platform->SetHeater(heater, 0.0);
temperatureFault = true;
switchedOff = true;
snprintf(scratchString, STRING_LENGTH, "Heating fault on heater %d, T = %.1f C; still not at temperature after %f seconds.\n",
heater, temperature, tim);
platform->Message(BOTH_MESSAGE, scratchString);
reprap.FlagTemperatureFault(heater);
}
}
else
{
heatingUp = false;
}
}
float targetTemperature = (active) ? activeTemperature : standbyTemperature;
float error = targetTemperature - temperature;
const PidParameters& pp = platform->GetPidParameters(heater);
if(!pp.UsePID())
{
platform->SetHeater(heater, (error > 0.0) ? pp.kS : 0.0);
return;
}
if(error < -pp.fullBand)
{
// actual temperature is well above target
temp_iState = (targetTemperature + pp.fullBand - 25.0) * pp.kT; // set the I term to our estimate of what will be needed ready for the switch to PID
platform->SetHeater(heater, 0.0);
lastTemperature = temperature;
return;
}
if(error > pp.fullBand)
{
// actual temperature is well below target
temp_iState = (targetTemperature - pp.fullBand - 25.0) * pp.kT; // set the I term to our estimate of what will be needed ready for the switch to PID
platform->SetHeater(heater, pp.kS);
lastTemperature = temperature;
return;
}
temp_iState += error * pp.kI;
if (temp_iState < pp.pidMin) temp_iState = pp.pidMin;
else if (temp_iState > pp.pidMax) temp_iState = pp.pidMax;
float temp_dState = pp.kD * (temperature - lastTemperature);
float result = pp.kP * error + temp_iState - temp_dState;
lastTemperature = temperature;
// Legacy - old RepRap PID parameters were set to give values in [0, 255] for 1 byte PWM control
// TODO - maybe change them to give [0.0, 1.0]?
if (result < 0.0) result = 0.0;
else if (result > 255.0) result = 255.0;
result = result/255.0;
if(!temperatureFault)
{
platform->SetHeater(heater, result * pp.kS);
}
// debugPrintf("Heater %d: e=%f, P=%f, I=%f, d=%f, r=%f\n", heater, error, pp.kP*error, temp_iState, temp_dState, result);
}