This repository has been archived on 2025-02-01. You can view files and clone it, but cannot push or open issues or pull requests.
reprapfirmware-dc42/GCodes.h
David Crocker 52b21d0eed Version 1.04c
Implemented rr_config web request for zpl's latest web interface
Implemented 7-factor auto calibration for delta printers
Fix bug with fileinfo calls corrupting memory
M563 can now be used to delete tools
2015-04-02 20:19:17 +01:00

260 lines
13 KiB
C++

/****************************************************************************************************
RepRapFirmware - G Codes
This class interprets G Codes from one or more sources, and calls the functions in Move, Heat etc
that drive the machine to do what the G Codes command.
-----------------------------------------------------------------------------------------------------
Version 0.1
13 February 2013
Adrian Bowyer
RepRap Professional Ltd
http://reprappro.com
Licence: GPL
****************************************************************************************************/
#ifndef GCODES_H
#define GCODES_H
#include "GCodeBuffer.h"
const unsigned int StackSize = 5;
const char feedrateLetter = 'F'; // GCode feedrate
const char extrudeLetter = 'E'; // GCode extrude
// Type for specifying which endstops we want to check
typedef uint16_t EndstopChecks; // must be large enough to hold a bitmap of drive numbers or ZProbeActive
const EndstopChecks ZProbeActive = 1 << 15; // must be distinct from 1 << (any drive number)
const float minutesToSeconds = 60.0;
const float secondsToMinutes = 1.0/minutesToSeconds;
// Enumeration to list all the possible states that the Gcode processing machine may be in
enum class GCodeState
{
normal, // not doing anything and ready to process a new GCode
waitingForMoveToComplete, // doing a homing move, so we must wait for it to finish before processing another GCode
homing,
setBed1,
setBed2,
setBed3,
toolChange1,
toolChange2,
toolChange3,
pausing1,
pausing2,
resuming1,
resuming2,
resuming3
};
// Small class to stack the state when we execute a macro file
class GCodeMachineState
{
public:
GCodeState state;
GCodeBuffer *gb; // this may be null when executing config.g
float feedrate;
FileData fileState;
bool drivesRelative;
bool axesRelative;
bool doingFileMacro;
};
//****************************************************************************************************
// The GCode interpreter
class GCodes
{
public:
GCodes(Platform* p, Webserver* w);
void Spin(); // Called in a tight loop to make this class work
void Init(); // Set it up
void Exit(); // Shut it down
void Reset(); // Reset some parameter to defaults
bool ReadMove(float* m, EndstopChecks& ce, uint8_t& rMoveType, FilePosition& fPos); // Called by the Move class to get a movement set by the last G Code
void ClearMove();
void QueueFileToPrint(const char* fileName); // Open a file of G Codes to run
void DeleteFile(const char* fileName); // Does what it says
bool GetProbeCoordinates(int count, float& x, float& y, float& z) const; // Get pre-recorded probe coordinates
void GetCurrentCoordinates(StringRef& s) const; // Write where we are into a string
bool PrintingAFile() const; // Are we in the middle of printing a file?
bool DoingFileMacro() const; // Or still busy processing a macro file?
float FractionOfFilePrinted() const; // Get fraction of file printed
void Diagnostics(); // Send helpful information out
bool HaveIncomingData() const; // Is there something that we have to do?
bool GetAxisIsHomed(uint8_t axis) const { return axisIsHomed[axis]; } // Is the axis at 0?
void SetAxisIsHomed(uint8_t axis) { axisIsHomed[axis] = true; } // Tell us that the axis is now homed
bool CoolingInverted() const; // Is the current fan value inverted?
void PauseSDPrint(); // Pause the current print from SD card
float GetSpeedFactor() const { return speedFactor * minutesToSeconds; } // Return the current speed factor
const float *GetExtrusionFactors() const { return extrusionFactors; } // Return the current extrusion factors
float GetRawExtruderPosition(size_t drive) const; // Get the actual extruder position, after adjusting the extrusion factor
bool HaveAux() const { return auxDetected; } // Any device on the AUX line?
bool IsPaused() const;
bool IsPausing() const;
bool IsResuming() const;
private:
void StartNextGCode(StringRef& reply); // Fetch a new GCode and process it
void DoFilePrint(GCodeBuffer* gb, StringRef& reply); // Get G Codes from a file and print them
bool AllMovesAreFinishedAndMoveBufferIsLoaded(); // Wait for move queue to exhaust and the current position is loaded
bool DoCannedCycleMove(EndstopChecks ce); // Do a move from an internally programmed canned cycle
void DoFileMacro(const char* fileName); // Run a GCode macro in a file, error if not found
void FileMacroCyclesReturn(); // End a macro
bool ActOnCode(GCodeBuffer* gb, StringRef& reply); // Do a G, M or T Code
bool HandleGcode(GCodeBuffer* gb, StringRef& reply); // Do a G code
bool HandleMcode(GCodeBuffer* gb, StringRef& reply); // Do an M code
bool HandleTcode(GCodeBuffer* gb, StringRef& reply); // Do a T code
int SetUpMove(GCodeBuffer* gb, StringRef& reply); // Pass a move on to the Move module
bool DoDwell(GCodeBuffer *gb); // Wait for a bit
bool DoDwellTime(float dwell); // Really wait for a bit
bool DoSingleZProbeAtPoint(int probePointIndex); // Probe at a given point
bool DoSingleZProbe(); // Probe where we are
bool SetSingleZProbeAtAPosition(GCodeBuffer *gb, StringRef& reply); // Probes at a given position - see the comment at the head of the function itself
void SetBedEquationWithProbe(int sParam, StringRef& reply); // Probes a series of points and sets the bed equation
bool SetPrintZProbe(GCodeBuffer *gb, StringRef& reply); // Either return the probe value, or set its threshold
void SetOrReportOffsets(StringRef& reply, GCodeBuffer *gb); // Deal with a G10
bool SetPositions(GCodeBuffer *gb); // Deal with a G92
bool LoadMoveBufferFromGCode(GCodeBuffer *gb, // Set up a move for the Move class
bool doingG92, bool applyLimits);
bool NoHome() const; // Are we homing and not finished?
void Push(); // Push feedrate etc on the stack
void Pop(); // Pop feedrate etc
void DisableDrives(); // Turn the motors off
void SetEthernetAddress(GCodeBuffer *gb, int mCode); // Does what it says
void SetMACAddress(GCodeBuffer *gb); // Deals with an M540
void HandleReply(bool error, const GCodeBuffer *gb, // If the GCode is from the serial interface, reply to it
const char* reply, char gMOrT, int code, bool resend);
bool OpenFileToWrite(const char* directory, // Start saving GCodes in a file
const char* fileName, GCodeBuffer *gb);
void WriteGCodeToFile(GCodeBuffer *gb); // Write this GCode into a file
bool SendConfigToLine(); // Deal with M503
void WriteHTMLToFile(char b, GCodeBuffer *gb); // Save an HTML file (usually to upload a new web interface)
bool OffsetAxes(GCodeBuffer *gb); // Set offsets - deprecated, use G10
void SetPidParameters(GCodeBuffer *gb, int heater, StringRef& reply); // Set the P/I/D parameters for a heater
void SetHeaterParameters(GCodeBuffer *gb, StringRef& reply); // Set the thermistor and ADC parameters for a heater
int8_t Heater(int8_t head) const; // Legacy G codes start heaters at 0, but we use 0 for the bed. This sorts that out.
void ManageTool(GCodeBuffer *gb, StringRef& reply); // Create a new tool definition
void SetToolHeaters(Tool *tool, float temperature); // Set all a tool's heaters to the temperature. For M104...
bool ToolHeatersAtSetTemperatures(const Tool *tool) const; // Wait for the heaters associated with the specified tool to reach their set temperatures
bool AllAxesAreHomed() const; // Return true if all axes are homed
void SetAllAxesNotHomed(); // Flag all axes as not homed
void SetPositions(float positionNow[DRIVES]); // Set the current position to be this
Platform* platform; // The RepRap machine
bool active; // Live and running?
bool isPaused; // true if the print has been paused
Webserver* webserver; // The webserver class
float dwellTime; // How long a pause for a dwell (seconds)?
bool dwellWaiting; // We are in a dwell
GCodeBuffer* webGCode; // The sources...
GCodeBuffer* fileGCode; // ...
GCodeBuffer* serialGCode; // ...
GCodeBuffer* auxGCode; // this one is for the LCD display on the async serial interface
GCodeBuffer* fileMacroGCode; // ...
GCodeBuffer *gbCurrent;
bool moveAvailable; // Have we seen a move G Code and set it up?
float moveBuffer[DRIVES+1]; // Move coordinates; last is feed rate
float savedMoveBuffer[DRIVES+1]; // The position and feedrate when we started the current simulation
float pausedMoveBuffer[DRIVES+1]; // Move coordinates; last is feed rate
EndstopChecks endStopsToCheck; // Which end stops we check them on the next move
uint8_t moveType; // 0 = normal move, 1 = homing move, 2 = direct motor move
GCodeState state; // The main state variable of the GCode state machine
bool drivesRelative;
bool axesRelative;
GCodeMachineState stack[StackSize]; // State that we save when calling macro files
unsigned int stackPointer; // Push and Pop stack pointer
static const char axisLetters[AXES]; // 'X', 'Y', 'Z'
float lastRawExtruderPosition[DRIVES - AXES]; // Extruder position of the last move fed into the Move class
float record[DRIVES+1]; // Temporary store for move positions
float moveToDo[DRIVES+1]; // Where to go set by G1 etc
bool activeDrive[DRIVES+1]; // Is this drive involved in a move?
bool offSetSet; // Are any axis offsets non-zero?
float distanceScale; // MM or inches
FileData fileBeingPrinted;
FileData fileToPrint;
FileStore* fileBeingWritten; // A file to write G Codes (or sometimes HTML) in
FileStore* configFile; // A file containing a macro
uint16_t toBeHomed; // Bitmap of axes still to be homed
bool doingFileMacro; // Are we executing a macro file?
int oldToolNumber, newToolNumber; // Tools being changed
const char* eofString; // What's at the end of an HTML file?
uint8_t eofStringCounter; // Check the...
uint8_t eofStringLength; // ... EoF string as we read.
int probeCount; // Counts multiple probe points
int8_t cannedCycleMoveCount; // Counts through internal (i.e. not macro) canned cycle moves
bool cannedCycleMoveQueued; // True if a canned cycle move has been set
bool zProbesSet; // True if all Z probing is done and we can set the bed equation
float longWait; // Timer for things that happen occasionally (seconds)
bool limitAxes; // Don't think outside the box.
bool axisIsHomed[AXES]; // These record which of the axes have been homed
bool coolingInverted;
float pausedFanValue;
float speedFactor; // speed factor, including the conversion from mm/min to mm/sec, normally 1/60
float speedFactorChange; // factor by which we changed the speed factor since the last move
float extrusionFactors[DRIVES - AXES]; // extrusion factors (normally 1.0)
float lastProbedZ; // the last height at which the Z probe stopped
bool auxDetected; // Have we processed at least one G-Code from an AUX device?
bool simulating;
float simulationTime;
FilePosition filePos; // The position we got up to in the file being printed
FilePosition moveFilePos; // Saved version of filePos for the next real move to be processed
};
//*****************************************************************************************************
inline bool GCodes::PrintingAFile() const
{
return FractionOfFilePrinted() >= 0.0;
}
inline bool GCodes::DoingFileMacro() const
{
return doingFileMacro;
}
inline bool GCodes::HaveIncomingData() const
{
return fileBeingPrinted.IsLive() ||
webserver->GCodeAvailable() ||
(platform->GetLine()->Status() & byteAvailable) ||
(platform->GetAux()->Status() & byteAvailable);
}
// This function takes care of the fact that the heater and head indices don't match because the bed is heater 0.
inline int8_t GCodes::Heater(int8_t head) const
{
return head+1;
}
inline bool GCodes::CoolingInverted() const
{
return coolingInverted;
}
inline bool GCodes::AllAxesAreHomed() const
{
return axisIsHomed[X_AXIS] && axisIsHomed[Y_AXIS] && axisIsHomed[Z_AXIS];
}
inline void GCodes::SetAllAxesNotHomed()
{
axisIsHomed[X_AXIS] = axisIsHomed[Y_AXIS] = axisIsHomed[Z_AXIS] = false;
}
#endif