This repository has been archived on 2025-02-01. You can view files and clone it, but cannot push or open issues or pull requests.
reprapfirmware-dc42/DDA.h
David Crocker 6e0f113927 Version 1.04d
Tidied up delta auto-calibration code. We now use least squares for 3,
4, 6 or 7-factor calibration.
When doing delta calibration, if a probe offset was used to adjust the
head position when probing, use the actual head coordinates instead the
probed coordinates.
Bug fix: newline was missing at end of SD card file list sent to USB
when in Marlin emulation mode.
Bug fix: Heater average PWM report (M573) sometimes gave inaccurate
values when the S parameter was used.
2015-04-08 18:03:59 +01:00

140 lines
6.8 KiB
C++

/*
* DDA.h
*
* Created on: 7 Dec 2014
* Author: David
*/
#ifndef DDA_H_
#define DDA_H_
#include "DriveMovement.h"
/**
* This defines a single linear movement of the print head
*/
class DDA
{
friend class DriveMovement;
public:
enum DDAState : unsigned char
{
empty, // empty or being filled in
provisional, // ready, but could be subject to modifications
frozen, // ready, no further modifications allowed
executing, // steps are currently being generated for this DDA
completed // move has been completed or aborted
};
DDA(DDA* n);
bool Init(const float nextMove[], EndstopChecks ce,
bool doMotorMapping, FilePosition fPos); // Set up a new move, returning true if it represents real movement
void Init(); // Set up initial positions for machine startup
bool Start(uint32_t tim); // Start executing the DDA, i.e. move the move.
bool Step(); // Take one step of the DDA, called by timed interrupt.
void SetNext(DDA *n) { next = n; }
void SetPrevious(DDA *p) { prev = p; }
void Release() { state = empty; }
void Prepare(); // Calculate all the values and freeze this DDA
float CalcTime() const; // Calculate the time needed for this move (used for simulation)
void PrintIfHasStepError();
bool CanPause() const { return canPause; }
DDAState GetState() const { return state; }
DDA* GetNext() const { return next; }
DDA* GetPrevious() const { return prev; }
int32_t GetTimeLeft() const;
float GetMotorPosition(size_t drive) const; // Get the real mm position of a motor at the planned endpoint of this move
const int32_t *DriveCoordinates() const { return endPoint; } // Get endpoints of a move in machine coordinates
void SetDriveCoordinate(int32_t a, size_t drive); // Force an end point
void SetFeedRate(float rate) { requestedSpeed = rate; }
float GetEndCoordinate(size_t drive, bool disableDeltaMapping);
bool FetchEndPosition(volatile int32_t ep[DRIVES], volatile float endCoords[AXES]);
void SetPositions(const float move[]); // Force the endpoints to be these
FilePosition GetFilePosition() const { return filePos; }
float GetRequestedSpeed() const { return requestedSpeed; }
void DebugPrint() const;
static const uint32_t stepClockRate = VARIANT_MCK/32; // the frequency of the clock used for stepper pulse timing (using TIMER_CLOCK3), about 0.38us resolution
static const uint64_t stepClockRateSquared = (uint64_t)stepClockRate * stepClockRate;
static const int32_t MinStepInterval = (4 * stepClockRate)/1000000; // the smallest sensible interval between steps (10us) in step timer clocks
// Note on the following constant:
// If we calculate the step interval on every clock, we reach a point where the calculation time exceeds the step interval.
// The worst case is pure Z movement on a delta. On a Mini Kossel with 80 steps/mm witt this formware runnig on a Duet (84MHx SAM3X8 processor),
// the calculation can just be managed in time at speeds of 15000mm/min (step interval 50us), but not at 20000mm/min (step interval 37.5us).
// Therefore, where the step interval falls below 70us, we don't calculate on every step.
static const uint32_t MinCalcInterval = (70 * stepClockRate)/1000000; // the smallest sensible interval between calculations (70us) in step timer clocks
private:
static const uint32_t minInterruptInterval = 6; // about 2us minimum interval between interrupts, in clocks
void RecalculateMove();
void CalcNewSpeeds();
void ReduceHomingSpeed(float newSpeed); // called to reduce homing speed when a near-endstop is triggered
void StopDrive(size_t drive); // stop movement of a drive and recalculate the endpoint
void MoveAborted(uint32_t clocksFromStart);
void DebugPrintVector(const char *name, const float *vec, size_t len) const;
static void DoLookahead(DDA *laDDA); // called by AdjustEndSpeed to do the real work
static float Normalise(float v[], size_t dim1, size_t dim2); // Normalise a vector of dim1 dimensions to unit length in the first dim1 dimensions
static void Absolute(float v[], size_t dimensions); // Put a vector in the positive hyperquadrant
static float Magnitude(const float v[], size_t dimensions); // Return the length of a vector
static void Scale(float v[], float scale, size_t dimensions); // Multiply a vector by a scalar
static float VectorBoxIntersection(const float v[], // Compute the length that a vector would have to have to...
const float box[], size_t dimensions); // ...just touch the surface of a hyperbox.
DDA* next; // The next one in the ring
DDA *prev; // The previous one in the ring
volatile DDAState state; // what state this DDA is in
bool endCoordinatesValid; // True if endCoordinates can be relied on
bool isDeltaMovement; // True if this is a delta printer movement
bool canPause; // True if we can pause at the end of this move
EndstopChecks endStopsToCheck; // Which endstops we are checking on this move
// We are on a half-word boundary here, so expect 2 bytes of padding to be inserted at this point
FilePosition filePos; // The position in the SD card file after this move was read, or zero if not read fro SD card
int32_t endPoint[DRIVES]; // Machine coordinates of the endpoint
float endCoordinates[AXES]; // The Cartesian coordinates at the end of the move
float directionVector[DRIVES]; // The normalised direction vector - first 3 are XYZ Cartesian coordinates even on a delta
float totalDistance; // How long is the move in hypercuboid space
float acceleration; // The acceleration to use
float requestedSpeed; // The speed that the user asked for
// These are used only in delta calculations
float a2plusb2; // Sum of the squares of the X and Y movement fractions
int32_t cKc; // The Z movement fraction multiplied by Kc and converted to integer
// These vary depending on how we connect the move with its predecessor and successor, but remain constant while the move is being executed
float startSpeed;
float endSpeed;
float topSpeed;
float accelDistance;
float decelDistance;
// This is a temporary, used to keep track of the lookahead to avoid making recursive calls
float targetNextSpeed; // The speed that the next move would like to start at
// These are calculated from the above and used in the ISR, so they are set up by Prepare()
uint32_t clocksNeeded; // in clocks
uint32_t moveStartTime; // clock count at which the move was started
uint32_t firstStepTime; // in clocks, relative to the start of the move
DriveMovement ddm[DRIVES]; // These describe the state of each drive movement
};
// Force an end point
inline void DDA::SetDriveCoordinate(int32_t a, size_t drive)
{
endPoint[drive] = a;
endCoordinatesValid = false;
}
#endif /* DDA_H_ */