/**************************************************************************************************** RepRapFirmware - G Codes This class interprets G Codes from one or more sources, and calls the functions in Move, Heat etc that drive the machine to do what the G Codes command. Most of the functions in here are designed not to wait, and they return a boolean. When you want them to do something, you call them. If they return false, the machine can't do what you want yet. So you go away and do something else. Then you try again. If they return true, the thing you wanted done has been done. ----------------------------------------------------------------------------------------------------- Version 0.1 13 February 2013 Adrian Bowyer RepRap Professional Ltd http://reprappro.com Licence: GPL ****************************************************************************************************/ #include "RepRapFirmware.h" GCodes::GCodes(Platform* p, Webserver* w) { active = false; platform = p; webserver = w; webGCode = new GCodeBuffer(platform, "web: "); fileGCode = new GCodeBuffer(platform, "file: "); serialGCode = new GCodeBuffer(platform, "serial: "); cannedCycleGCode = new GCodeBuffer(platform, "macro: "); } void GCodes::Exit() { platform->Message(HOST_MESSAGE, "GCodes class exited.\n"); active = false; } void GCodes::Init() { Reset(); drivesRelative = true; axesRelative = false; gCodeLetters = GCODE_LETTERS; distanceScale = 1.0; for (int8_t i = 0; i < DRIVES - AXES; i++) { lastPos[i] = 0.0; } configFile = NULL; eofString = EOF_STRING; eofStringCounter = 0; eofStringLength = strlen(eofString); homeX = false; homeY = false; homeZ = false; offSetSet = false; selectedHead = -1; zProbesSet = false; active = true; longWait = platform->Time(); dwellTime = longWait; limitAxes = true; axisIsHomed[X_AXIS] = axisIsHomed[Y_AXIS] = axisIsHomed[Z_AXIS] = false; coolingInverted = false; } // This is called from Init and when doing an emergency stop void GCodes::Reset() { webGCode->Init(); fileGCode->Init(); serialGCode->Init(); cannedCycleGCode->Init(); moveAvailable = false; fileBeingPrinted.Close(); fileToPrint.Close(); fileBeingWritten = NULL; checkEndStops = false; doingCannedCycleFile = false; dwellWaiting = false; stackPointer = 0; waitingForMoveToComplete = false; probeCount = 0; cannedCycleMoveCount = 0; cannedCycleMoveQueued = false; gFeedRate = platform->MaxFeedrate(Z_AXIS); // Typically the slowest speedFactor = 1.0/60.0; // default is just to convert from mm/minute to mm/second for (size_t i = 0; i < DRIVES - AXES; ++i) { extrusionFactors[i] = 1.0; } } void GCodes::DoFilePrint(GCodeBuffer* gb) { char b; if (fileBeingPrinted.IsLive()) { if (fileBeingPrinted.Read(b)) { if (gb->Put(b)) { gb->SetFinished(ActOnGcode(gb)); } } else { if (gb->Put('\n')) // In case there wasn't one ending the file { gb->SetFinished(ActOnGcode(gb)); } fileBeingPrinted.Close(); } } } void GCodes::Spin() { if (!active) return; // Check each of the sources of G Codes (web, serial, and file) to // see if what they are doing has been done. If it hasn't, return without // looking at anything else. // // Note the order establishes a priority: web first, then serial, and file // last. If file weren't last, then the others would never get a look in when // a file was being printed. if (webGCode->Active()) { webGCode->SetFinished(ActOnGcode(webGCode)); platform->ClassReport("GCodes", longWait); return; } if (serialGCode->Active()) { serialGCode->SetFinished(ActOnGcode(serialGCode)); platform->ClassReport("GCodes", longWait); return; } if (fileGCode->Active()) { fileGCode->SetFinished(ActOnGcode(fileGCode)); platform->ClassReport("GCodes", longWait); return; } // Now check if a G Code byte is available from each of the sources // in the same order for the same reason. if (webserver->GCodeAvailable()) { int8_t i = 0; do { char b = webserver->ReadGCode(); if (webGCode->WritingFileDirectory() == platform->GetWebDir()) { if (b == 0) { b = '\n'; // webserver replaces newline by null } WriteHTMLToFile(b, webGCode); } else { if (webGCode->Put(b)) { // we have a complete gcode if (webGCode->WritingFileDirectory() != NULL) { WriteGCodeToFile(webGCode); } else { webGCode->SetFinished(ActOnGcode(webGCode)); } break; // stop after receiving a complete gcode in case we haven't finished processing it } } ++i; } while (i < 50 && webserver->GCodeAvailable()); platform->ClassReport("GCodes", longWait); return; } // Now the serial interface. First check the special case of our // uploading the reprap.htm file if (serialGCode->WritingFileDirectory() == platform->GetWebDir()) { if (platform->GetLine()->Status() & byteAvailable) { char b; platform->GetLine()->Read(b); WriteHTMLToFile(b, serialGCode); } } else { // Otherwise just deal in general with incoming bytes from the serial interface if (platform->GetLine()->Status() & byteAvailable) { // Read several bytes instead of just one. This approximately doubles the speed of file uploading. int8_t i = 0; do { char b; platform->GetLine()->Read(b); if (serialGCode->Put(b)) // add char to buffer and test whether the gcode is complete { // we have a complete gcode if (serialGCode->WritingFileDirectory() != NULL) { WriteGCodeToFile(serialGCode); } else { serialGCode->SetFinished(ActOnGcode(serialGCode)); } break; // stop after receiving a complete gcode in case we haven't finished processing it } ++i; } while (i < 16 && (platform->GetLine()->Status() & byteAvailable)); platform->ClassReport("GCodes", longWait); return; } } DoFilePrint(fileGCode); platform->ClassReport("GCodes", longWait); } void GCodes::Diagnostics() { platform->Message(HOST_MESSAGE, "GCodes Diagnostics:\n"); } // The wait till everything's done function. If you need the machine to // be idle before you do something (for example homeing an axis, or shutting down) call this // until it returns true. As a side-effect it loads moveBuffer with the last // position and feedrate for you. bool GCodes::AllMovesAreFinishedAndMoveBufferIsLoaded() { // Last one gone? if (moveAvailable) return false; // Wait for all the queued moves to stop so we get the actual last position and feedrate if (!reprap.GetMove()->AllMovesAreFinished()) return false; reprap.GetMove()->ResumeMoving(); // Load the last position; If Move can't accept more, return false - should never happen if (!reprap.GetMove()->GetCurrentState(moveBuffer)) return false; return true; } // Save (some of) the state of the machine for recovery in the future. // Call repeatedly till it returns true. bool GCodes::Push() { if (stackPointer >= STACK) { platform->Message(HOST_MESSAGE, "Push(): stack overflow!\n"); return true; } if (!AllMovesAreFinishedAndMoveBufferIsLoaded()) return false; drivesRelativeStack[stackPointer] = drivesRelative; axesRelativeStack[stackPointer] = axesRelative; feedrateStack[stackPointer] = gFeedRate; fileStack[stackPointer].CopyFrom(fileBeingPrinted); stackPointer++; platform->PushMessageIndent(); return true; } // Recover a saved state. Call repeatedly till it returns true. bool GCodes::Pop() { if (stackPointer <= 0) { platform->Message(HOST_MESSAGE, "Pop(): stack underflow!\n"); return true; } if (!AllMovesAreFinishedAndMoveBufferIsLoaded()) return false; stackPointer--; drivesRelative = drivesRelativeStack[stackPointer]; axesRelative = axesRelativeStack[stackPointer]; fileBeingPrinted.MoveFrom(fileStack[stackPointer]); platform->PopMessageIndent(); // Remember for next time if we have just been switched // to absolute drive moves for (int8_t i = AXES; i < DRIVES; i++) lastPos[i - AXES] = moveBuffer[i]; // Do a null move to set the correct feedrate gFeedRate = feedrateStack[stackPointer]; moveBuffer[DRIVES] = gFeedRate; checkEndStops = false; moveAvailable = true; return true; } // Move expects all axis movements to be absolute, and all // extruder drive moves to be relative. This function serves that. // If applyLimits is true and we have homed the relevant axes, then we don't allow movement beyond the bed. // Note that if no tool is active (i.e. a Tn command hasn't previously been sent) then no E values will // be acted upon as there is nothing to apply them to. void GCodes::LoadMoveBufferFromGCode(GCodeBuffer *gb, bool doingG92, bool applyLimits) { for (uint8_t i = 0; i < DRIVES; i++) { if (i < AXES) { // Doing X, Y or Z if (gb->Seen(gCodeLetters[i])) { float moveArg = gb->GetFValue() * distanceScale; if (axesRelative && !doingG92) { moveArg += moveBuffer[i]; } if (applyLimits && i < 2 && axisIsHomed[i] && !doingG92) // limit X and Y moves unless doing G92 { if (moveArg < platform->AxisMinimum(i)) { moveArg = platform->AxisMinimum(i); } else if (moveArg > platform->AxisMaximum(i)) { moveArg = platform->AxisMaximum(i); } } moveBuffer[i] = moveArg; if (doingG92 && !doingCannedCycleFile) { axisIsHomed[i] = true; // doing a manual G92 is equivalent to homing the axis } } } else { /*Fixed to work with multiple concurrent extruder drives: * Default or M160 S1 (set use only one extruder drive) * "G1 En.n" adds the float n.n to the move buffer for the selected head * There is no change in behaviour for one extruder drive setups, or multiple extruder * setups where only one drive is used at any one time. * * M160 Sn (set to use "n" extruder drives) eg * "M160 S3" * "G1 En.n:m.m:o.o" adds the floats to the move buffer in the following way: * moveBuffer[AXES+selectedHead) = n.n * moveBuffer[AXES+selectedHead+1) = m.m * moveBuffer[AXES+selectedHead+2) = o.o * so if selectedHead=1 move buffer ends up looking like this for a 5 extruder drive setup: * {x.x, y.y, z.z, n.n, m.m, o.o, 0.0,0.0, f.f} * where x,y,z are the axes and f is the feedrate. * If selected head > 0 then there is the possibility that more drives can be set than * exist, in that case the last values are discarded e.g: * "T3" * "M160 S3" * "G1 En.n:m.m:o.o" * would leave the move buffer on a 4 extruder drive setup looking like this: * {x.x, y.y, z.z, 0.0, 0.0, 0.0, n.n,m.m, f.f} */ if(gb->Seen('E') && ((i-AXES) == selectedHead-1)) { //the number of mixing drives set (by M160) int numDrives = platform->GetMixingDrives(); const char* extruderString = gb->GetString(); float eArg[numDrives]; uint8_t sp = 0; //string pointer uint8_t fp = 0; //float pointer for the start of each floating point number in turn uint8_t hp = 0; //index of the head currently referred to for eArg while(extruderString[sp]) { //first check to confirm we have not got to the feedrate setting part of the string if(extruderString[sp] == 'F') { break; } if(extruderString[sp] == ':') { eArg[hp] = (atoff(&extruderString[fp])) * distanceScale * extrusionFactors[hp]; hp++; if(hp >= numDrives) { platform->Message(HOST_MESSAGE, "More mixing extruder drives required in G1 string than set with M160: "); platform->Message(HOST_MESSAGE, gb->Buffer()); platform->Message(HOST_MESSAGE, "\n"); return; } sp++; fp = sp; } else { sp++; } } //capture the last drive step amount in the string (or the only one in the case of only one extruder) eArg[hp] = (atoff(&extruderString[fp])) * distanceScale * extrusionFactors[hp]; //set the move buffer for each extruder drive for(int j=0;jSeen(FEEDRATE_LETTER)) { gFeedRate = gb->GetFValue() * distanceScale * speedFactor; } moveBuffer[DRIVES] = gFeedRate; // We always set it, as Move may have modified the last one. } // This function is called for a G Code that makes a move. // If the Move class can't receive the move (i.e. things have to wait), return 0. // If we have queued the move and the caller doesn't need to wait for it to complete, return 1. // If we need to wait for the move to complete before doing another one (because endstops are checked in this move), return 2. int GCodes::SetUpMove(GCodeBuffer *gb) { // Last one gone yet? if (moveAvailable) return 0; // Load the last position into moveBuffer; If Move can't accept more, return false if (!reprap.GetMove()->GetCurrentState(moveBuffer)) return 0; //check to see if the move is a 'homing' move that endstops are checked on. checkEndStops = false; if (gb->Seen('S')) { if (gb->GetIValue() == 1) { checkEndStops = true; } } //loads the movebuffer with either the absolute movement required or the //relative movement required LoadMoveBufferFromGCode(gb, false, !checkEndStops && limitAxes); //There is a new move in the move buffer moveAvailable = true; return (checkEndStops) ? 2 : 1; } // The Move class calls this function to find what to do next. bool GCodes::ReadMove(float m[], bool& ce) { if (!moveAvailable) return false; for (int8_t i = 0; i <= DRIVES; i++) // 1 more for feedrate { m[i] = moveBuffer[i]; } ce = checkEndStops; moveAvailable = false; checkEndStops = false; return true; } bool GCodes::DoFileCannedCycles(const char* fileName) { // Have we started the file? if (!doingCannedCycleFile) { // No if (!Push()) return false; FileStore *f = platform->GetFileStore(platform->GetSysDir(), fileName, false); if (f == NULL) { platform->Message(HOST_MESSAGE, "Canned cycle GCode file not found - "); platform->Message(HOST_MESSAGE, fileName); platform->Message(HOST_MESSAGE, "\n"); if (!Pop()) { platform->Message(HOST_MESSAGE, "Cannot pop the stack.\n"); } return true; } fileBeingPrinted.Set(f); doingCannedCycleFile = true; cannedCycleGCode->Init(); return false; } // Have we finished the file? if (!fileBeingPrinted.IsLive()) { // Yes if (!Pop()) return false; doingCannedCycleFile = false; cannedCycleGCode->Init(); return true; } // No - Do more of the file if (cannedCycleGCode->Active()) { cannedCycleGCode->SetFinished(ActOnGcode(cannedCycleGCode)); return false; } DoFilePrint(cannedCycleGCode); return false; } bool GCodes::FileCannedCyclesReturn() { if (!doingCannedCycleFile) return true; if (!AllMovesAreFinishedAndMoveBufferIsLoaded()) return false; doingCannedCycleFile = false; cannedCycleGCode->Init(); fileBeingPrinted.Close(); return true; } // To execute any move, call this until it returns true. // moveToDo[] entries corresponding with false entries in action[] will // be ignored. Recall that moveToDo[DRIVES] should contain the feedrate // you want (if action[DRIVES] is true). bool GCodes::DoCannedCycleMove(bool ce) { // Is the move already running? if (cannedCycleMoveQueued) { // Yes. if (!Pop()) // Wait for the move to finish then restore the state return false; cannedCycleMoveQueued = false; return true; } else { // No. if (!Push()) // Wait for the RepRap to finish whatever it was doing, save it's state, and load moveBuffer[] with the current position. return false; for (int8_t drive = 0; drive <= DRIVES; drive++) { if (activeDrive[drive]) moveBuffer[drive] = moveToDo[drive]; } checkEndStops = ce; cannedCycleMoveQueued = true; moveAvailable = true; } return false; } // This sets positions. I.e. it handles G92. bool GCodes::SetPositions(GCodeBuffer *gb) { if (!AllMovesAreFinishedAndMoveBufferIsLoaded()) return false; LoadMoveBufferFromGCode(gb, true, false); // Transform the position so that e.g. if the user does G92 Z0, // the position we report (which gets inverse-transformed) really is Z=0 afterwards reprap.GetMove()->Transform(moveBuffer); reprap.GetMove()->SetLiveCoordinates(moveBuffer); reprap.GetMove()->SetPositions(moveBuffer); return true; } // Offset the axes by the X, Y, and Z amounts in the M code in gb. Say the machine is at [10, 20, 30] and // the offsets specified are [8, 2, -5]. The machine will move to [18, 22, 25] and henceforth consider that point // to be [10, 20, 30]. bool GCodes::OffsetAxes(GCodeBuffer* gb) { if (!offSetSet) { if (!AllMovesAreFinishedAndMoveBufferIsLoaded()) return false; for (int8_t drive = 0; drive <= DRIVES; drive++) { if (drive < AXES || drive == DRIVES) { record[drive] = moveBuffer[drive]; moveToDo[drive] = moveBuffer[drive]; } else { record[drive] = 0.0; moveToDo[drive] = 0.0; } activeDrive[drive] = false; } for (int8_t axis = 0; axis < AXES; axis++) { if (gb->Seen(gCodeLetters[axis])) { moveToDo[axis] += gb->GetFValue(); activeDrive[axis] = true; } } if(gb->Seen(FEEDRATE_LETTER)) // Has the user specified a feedrate? { moveToDo[DRIVES] = gb->GetFValue(); activeDrive[DRIVES] = true; } offSetSet = true; } if (DoCannedCycleMove(false)) { //LoadMoveBufferFromArray(record); for (int drive = 0; drive <= DRIVES; drive++) moveBuffer[drive] = record[drive]; reprap.GetMove()->SetLiveCoordinates(record); // This doesn't transform record reprap.GetMove()->SetPositions(record); // This does offSetSet = false; return true; } return false; } // Home one or more of the axes. Which ones are decided by the // booleans homeX, homeY and homeZ. // Returns true if completed, false if needs to be called again. // 'reply' is only written if there is an error. // 'error' is false on entry, gets changed to true if there is an error. bool GCodes::DoHome(char* reply, bool& error) //pre(reply.upb == STRING_LENGTH) { if (homeX && homeY && homeZ) { if (DoFileCannedCycles(HOME_ALL_G)) { homeX = false; homeY = false; homeZ = false; return true; } return false; } if (homeX) { if (DoFileCannedCycles(HOME_X_G)) { homeX = false; return NoHome(); } return false; } if (homeY) { if (DoFileCannedCycles(HOME_Y_G)) { homeY = false; return NoHome(); } return false; } if (homeZ) { if (platform->MustHomeXYBeforeZ() && (!axisIsHomed[X_AXIS] || !axisIsHomed[Y_AXIS])) { // We can only home Z if X and Y have already been homed strncpy(reply, "Must home X and Y before homing Z", STRING_LENGTH); error = true; homeZ = false; return true; } if (DoFileCannedCycles(HOME_Z_G)) { homeZ = false; return NoHome(); } return false; } // Should never get here checkEndStops = false; moveAvailable = false; return true; } // This lifts Z a bit, moves to the probe XY coordinates (obtained by a call to GetProbeCoordinates() ), // probes the bed height, and records the Z coordinate probed. If you want to program any general // internal canned cycle, this shows how to do it. bool GCodes::DoSingleZProbeAtPoint() { reprap.GetMove()->SetIdentityTransform(); // It doesn't matter if these are called repeatedly for (int8_t drive = 0; drive <= DRIVES; drive++) { activeDrive[drive] = false; } switch (cannedCycleMoveCount) { case 0: // Raise Z to 5mm. This only does anything on the first move; on all the others Z is already there moveToDo[Z_AXIS] = Z_DIVE; activeDrive[Z_AXIS] = true; moveToDo[DRIVES] = platform->MaxFeedrate(Z_AXIS); activeDrive[DRIVES] = true; reprap.GetMove()->SetZProbing(false); if (DoCannedCycleMove(false)) { cannedCycleMoveCount++; } return false; case 1: // Move to the correct XY coordinates GetProbeCoordinates(probeCount, moveToDo[X_AXIS], moveToDo[Y_AXIS], moveToDo[Z_AXIS]); activeDrive[X_AXIS] = true; activeDrive[Y_AXIS] = true; // NB - we don't use the Z value moveToDo[DRIVES] = platform->MaxFeedrate(X_AXIS); activeDrive[DRIVES] = true; reprap.GetMove()->SetZProbing(false); if (DoCannedCycleMove(false)) { cannedCycleMoveCount++; platform->SetZProbing(true); // do this here because we only want to call it once } return false; case 2: // Probe the bed moveToDo[Z_AXIS] = -2.0 * platform->AxisMaximum(Z_AXIS); activeDrive[Z_AXIS] = true; moveToDo[DRIVES] = platform->HomeFeedRate(Z_AXIS); activeDrive[DRIVES] = true; reprap.GetMove()->SetZProbing(true); if (DoCannedCycleMove(true)) { cannedCycleMoveCount++; platform->SetZProbing(false); } return false; case 3: // Raise the head 5mm moveToDo[Z_AXIS] = Z_DIVE; activeDrive[Z_AXIS] = true; moveToDo[DRIVES] = platform->MaxFeedrate(Z_AXIS); activeDrive[DRIVES] = true; reprap.GetMove()->SetZProbing(false); if (DoCannedCycleMove(false)) { cannedCycleMoveCount++; } return false; default: cannedCycleMoveCount = 0; reprap.GetMove()->SetZBedProbePoint(probeCount, reprap.GetMove()->GetLastProbedZ()); return true; } } // This simply moves down till the Z probe/switch is triggered. bool GCodes::DoSingleZProbe() { for (int8_t drive = 0; drive <= DRIVES; drive++) { activeDrive[drive] = false; } switch (cannedCycleMoveCount) { case 0: platform->SetZProbing(true); // we only want to call this once ++cannedCycleMoveCount; return false; case 1: moveToDo[Z_AXIS] = -1.1 * platform->AxisTotalLength(Z_AXIS); activeDrive[Z_AXIS] = true; moveToDo[DRIVES] = platform->HomeFeedRate(Z_AXIS); activeDrive[DRIVES] = true; if (DoCannedCycleMove(true)) { cannedCycleMoveCount++; probeCount = 0; platform->SetZProbing(false); } return false; default: cannedCycleMoveCount = 0; return true; } } // This sets wherever we are as the probe point P (probePointIndex) // then probes the bed, or gets all its parameters from the arguments. // If X or Y are specified, use those; otherwise use the machine's // coordinates. If no Z is specified use the machine's coordinates. If it // is specified and is greater than SILLY_Z_VALUE (i.e. greater than -9999.0) // then that value is used. If it's less than SILLY_Z_VALUE the bed is // probed and that value is used. bool GCodes::SetSingleZProbeAtAPosition(GCodeBuffer *gb) { if (!AllMovesAreFinishedAndMoveBufferIsLoaded()) return false; if (!gb->Seen('P')) return DoSingleZProbe(); int probePointIndex = gb->GetIValue(); float x, y, z; if (gb->Seen(gCodeLetters[X_AXIS])) x = gb->GetFValue(); else x = moveBuffer[X_AXIS]; if (gb->Seen(gCodeLetters[Y_AXIS])) y = gb->GetFValue(); else y = moveBuffer[Y_AXIS]; if (gb->Seen(gCodeLetters[Z_AXIS])) z = gb->GetFValue(); else z = moveBuffer[Z_AXIS]; probeCount = probePointIndex; reprap.GetMove()->SetXBedProbePoint(probeCount, x); reprap.GetMove()->SetYBedProbePoint(probeCount, y); if (z > SILLY_Z_VALUE) { reprap.GetMove()->SetZBedProbePoint(probeCount, z); reprap.GetMove()->SetZProbing(false); // Not really needed, but let's be safe probeCount = 0; if (gb->Seen('S')) { zProbesSet = true; reprap.GetMove()->SetProbedBedEquation(); } return true; } else { if (DoSingleZProbeAtPoint()) { probeCount = 0; reprap.GetMove()->SetZProbing(false); if (gb->Seen('S')) { zProbesSet = true; reprap.GetMove()->SetProbedBedEquation(); } return true; } } return false; } // This probes multiple points on the bed (three in a // triangle or four in the corners), then sets the bed transformation to compensate // for the bed not quite being the plane Z = 0. bool GCodes::DoMultipleZProbe() { if (reprap.GetMove()->NumberOfXYProbePoints() < 3) { platform->Message(HOST_MESSAGE, "Bed probing: there needs to be 3 or more points set.\n"); return true; } if (DoSingleZProbeAtPoint()) { probeCount++; } if (probeCount >= reprap.GetMove()->NumberOfXYProbePoints()) { probeCount = 0; zProbesSet = true; reprap.GetMove()->SetZProbing(false); reprap.GetMove()->SetProbedBedEquation(); return true; } return false; } // This returns the (X, Y) points to probe the bed at probe point count. When probing, // it returns false. If called after probing has ended it returns true, and the Z coordinate // probed is also returned. bool GCodes::GetProbeCoordinates(int count, float& x, float& y, float& z) { x = reprap.GetMove()->xBedProbePoint(count); y = reprap.GetMove()->yBedProbePoint(count); z = reprap.GetMove()->zBedProbePoint(count); return zProbesSet; } bool GCodes::SetPrintZProbe(GCodeBuffer* gb, char* reply) { if (!AllMovesAreFinishedAndMoveBufferIsLoaded()) return false; if (gb->Seen(gCodeLetters[Z_AXIS])) { ZProbeParameters params; platform->GetZProbeParameters(params); params.height = gb->GetFValue(); if (gb->Seen('P')) { params.adcValue = gb->GetIValue(); } if (gb->Seen('S')) { params.calibTemperature = gb->GetFValue(); } else { // Use the current bed temperature as the calibration temperature if no value was provided params.calibTemperature = platform->GetTemperature(0); } if (gb->Seen('C')) { params.temperatureCoefficient = gb->GetFValue(); } else { params.temperatureCoefficient = 0.0; } platform->SetZProbeParameters(params); } else { int v0 = platform->ZProbe(); int v1, v2; switch(platform->GetZProbeSecondaryValues(v1, v2)) { case 1: snprintf(reply, STRING_LENGTH, "%d (%d)", v0, v1); break; case 2: snprintf(reply, STRING_LENGTH, "%d (%d, %d)", v0, v1, v2); break; default: snprintf(reply, STRING_LENGTH, "%d", v0); break; } } return true; } // Return the current coordinates as a printable string. Coordinates // are updated at the end of each movement, so this won't tell you // where you are mid-movement. //Fixed to deal with multiple extruders const char* GCodes::GetCurrentCoordinates() { float liveCoordinates[DRIVES + 1]; reprap.GetMove()->LiveCoordinates(liveCoordinates); snprintf(scratchString, STRING_LENGTH, "X:%f Y:%f Z:%f ", liveCoordinates[X_AXIS], liveCoordinates[Y_AXIS], liveCoordinates[Z_AXIS]); for(int i = AXES; i< DRIVES; i++) { sncatf(scratchString, STRING_LENGTH, "E%d:%f ",i-AXES,liveCoordinates[i]); } return scratchString; } bool GCodes::OpenFileToWrite(const char* directory, const char* fileName, GCodeBuffer *gb) { fileBeingWritten = platform->GetFileStore(directory, fileName, true); eofStringCounter = 0; if (fileBeingWritten == NULL) { platform->Message(HOST_MESSAGE, "Can't open GCode file for writing.\n"); return false; } else { gb->SetWritingFileDirectory(directory); return true; } } void GCodes::WriteHTMLToFile(char b, GCodeBuffer *gb) { if (fileBeingWritten == NULL) { platform->Message(HOST_MESSAGE, "Attempt to write to a null file.\n"); return; } if (eofStringCounter != 0 && b != eofString[eofStringCounter]) { for (size_t i = 0; i < eofStringCounter; ++i) { fileBeingWritten->Write(eofString[i]); } eofStringCounter = 0; } if (b == eofString[eofStringCounter]) { eofStringCounter++; if (eofStringCounter >= eofStringLength) { fileBeingWritten->Close(); fileBeingWritten = NULL; gb->SetWritingFileDirectory(NULL); const char* r = (platform->Emulating() == marlin) ? "Done saving file." : ""; HandleReply(false, gb == serialGCode, r, 'M', 560, false); return; } } else { fileBeingWritten->Write(b); } } void GCodes::WriteGCodeToFile(GCodeBuffer *gb) { if (fileBeingWritten == NULL) { platform->Message(HOST_MESSAGE, "Attempt to write to a null file.\n"); return; } // End of file? if (gb->Seen('M')) { if (gb->GetIValue() == 29) { fileBeingWritten->Close(); fileBeingWritten = NULL; gb->SetWritingFileDirectory(NULL); const char* r = (platform->Emulating() == marlin) ? "Done saving file." : ""; HandleReply(false, gb == serialGCode, r, 'M', 29, false); return; } } // Resend request? if (gb->Seen('G')) { if (gb->GetIValue() == 998) { if (gb->Seen('P')) { snprintf(scratchString, STRING_LENGTH, "%s", gb->GetIValue()); HandleReply(false, gb == serialGCode, scratchString, 'G', 998, true); return; } } } fileBeingWritten->Write(gb->Buffer()); fileBeingWritten->Write('\n'); HandleReply(false, gb == serialGCode, "", 'G', 1, false); } // Set up a file to print, but don't print it yet. void GCodes::QueueFileToPrint(const char* fileName) { fileToPrint.Close(); fileGCode->CancelPause(); // if we paused it and then asked to print a new file, cancel any pending command FileStore *f = platform->GetFileStore(platform->GetGCodeDir(), fileName, false); if (f != NULL) { fileToPrint.Set(f); } else { webserver->HandleReply("GCode file not found", true); platform->Message(HOST_MESSAGE, "GCode file not found\n"); } } void GCodes::DeleteFile(const char* fileName) { if(!platform->GetMassStorage()->Delete(platform->GetGCodeDir(), fileName)) { platform->Message(HOST_MESSAGE, "Unsuccessful attempt to delete: "); platform->Message(HOST_MESSAGE, fileName); platform->Message(HOST_MESSAGE, "\n"); webserver->HandleReply("Failed to delete file", true); } } // Send the config file to USB in response to an M503 command. // This is not used for processing M503 requests received via the webserver. bool GCodes::SendConfigToLine() { if (configFile == NULL) { configFile = platform->GetFileStore(platform->GetSysDir(), platform->GetConfigFile(), false); if (configFile == NULL) { platform->Message(HOST_MESSAGE, "Configuration file not found\n"); return true; } platform->GetLine()->Write('\n', true); } char b; while (configFile->Read(b)) { platform->GetLine()->Write(b, true); if (b == '\n') return false; } platform->GetLine()->Write('\n', true); configFile->Close(); configFile = NULL; return true; } // Function to handle dwell delays. Return true for // dwell finished, false otherwise. bool GCodes::DoDwell(GCodeBuffer *gb) { if(!gb->Seen('P')) return true; // No time given - throw it away float dwell = 0.001 * (float) gb->GetLValue(); // P values are in milliseconds; we need seconds // Wait for all the queued moves to stop if (!reprap.GetMove()->AllMovesAreFinished()) return false; return DoDwellTime(dwell); } bool GCodes::DoDwellTime(float dwell) { // Are we already in the dwell? if (dwellWaiting) { if (platform->Time() - dwellTime >= 0.0) { dwellWaiting = false; reprap.GetMove()->ResumeMoving(); return true; } return false; } // New dwell - set it up dwellWaiting = true; dwellTime = platform->Time() + dwell; return false; } // Set distance offsets and working and standby temperatures for // an extruder. I.e. handle a G10. bool GCodes::SetOffsets(GCodeBuffer *gb) { int8_t head; if (gb->Seen('P')) { head = gb->GetIValue(); // 0 is the Bed if (gb->Seen('R')) reprap.GetHeat()->SetStandbyTemperature(head, gb->GetFValue()); if (gb->Seen('S')) reprap.GetHeat()->SetActiveTemperature(head, gb->GetFValue()); // FIXME - do X, Y and Z } return true; } // Does what it says. bool GCodes::DisableDrives() { if (!AllMovesAreFinishedAndMoveBufferIsLoaded()) return false; for (int8_t drive = 0; drive < DRIVES; drive++) platform->Disable(drive); return true; } // Does what it says. bool GCodes::StandbyHeaters() { if (!AllMovesAreFinishedAndMoveBufferIsLoaded()) return false; for (int8_t heater = 0; heater < HEATERS; heater++) { reprap.GetHeat()->Standby(heater); } selectedHead = -1; //FIXME check this does not mess up setters (eg M906) when they are used after this command is called return true; } void GCodes::SetEthernetAddress(GCodeBuffer *gb, int mCode) { byte eth[4]; const char* ipString = gb->GetString(); uint8_t sp = 0; uint8_t spp = 0; uint8_t ipp = 0; while (ipString[sp]) { if (ipString[sp] == '.') { eth[ipp] = atoi(&ipString[spp]); ipp++; if (ipp > 3) { platform->Message(HOST_MESSAGE, "Dud IP address: "); platform->Message(HOST_MESSAGE, gb->Buffer()); platform->Message(HOST_MESSAGE, "\n"); return; } sp++; spp = sp; } else sp++; } eth[ipp] = atoi(&ipString[spp]); if (ipp == 3) { switch (mCode) { case 552: platform->SetIPAddress(eth); break; case 553: platform->SetNetMask(eth); break; case 554: platform->SetGateWay(eth); break; default: platform->Message(HOST_MESSAGE, "Setting ether parameter - dud code."); } } else { platform->Message(HOST_MESSAGE, "Dud IP address: "); platform->Message(HOST_MESSAGE, gb->Buffer()); platform->Message(HOST_MESSAGE, "\n"); } } void GCodes::SetMACAddress(GCodeBuffer *gb) { uint8_t mac[6]; const char* ipString = gb->GetString(); uint8_t sp = 0; uint8_t spp = 0; uint8_t ipp = 0; while(ipString[sp]) { if(ipString[sp] == ':') { mac[ipp] = strtol(&ipString[spp], NULL, 0); ipp++; if(ipp > 5) { platform->Message(HOST_MESSAGE, "Dud MAC address: "); platform->Message(HOST_MESSAGE, gb->Buffer()); platform->Message(HOST_MESSAGE, "\n"); return; } sp++; spp = sp; }else sp++; } mac[ipp] = strtol(&ipString[spp], NULL, 0); if(ipp == 5) { platform->SetMACAddress(mac); } else { platform->Message(HOST_MESSAGE, "Dud MAC address: "); platform->Message(HOST_MESSAGE, gb->Buffer()); platform->Message(HOST_MESSAGE, "\n"); } } void GCodes::HandleReply(bool error, bool fromLine, const char* reply, char gMOrT, int code, bool resend) { if (gMOrT != 'M' || code != 111) // web server reply for M111 is handled before we get here { webserver->HandleReply(reply, error); } Compatibility c = platform->Emulating(); if (!fromLine) c = me; const char* response = "ok"; if (resend) response = "rs "; const char* s = 0; switch (c) { case me: case reprapFirmware: if (!reply[0]) return; if (error) platform->GetLine()->Write("Error: "); platform->GetLine()->Write(reply); platform->GetLine()->Write("\n"); return; case marlin: if (gMOrT == 'M' && code == 20) { platform->GetLine()->Write("Begin file list\n"); platform->GetLine()->Write(reply); platform->GetLine()->Write("\nEnd file list\n"); platform->GetLine()->Write(response); platform->GetLine()->Write("\n"); return; } if (gMOrT == 'M' && code == 28) { platform->GetLine()->Write(response); platform->GetLine()->Write("\n"); platform->GetLine()->Write(reply); platform->GetLine()->Write("\n"); return; } if ((gMOrT == 'M' && code == 105) || (gMOrT == 'G' && code == 998)) { platform->GetLine()->Write(response); platform->GetLine()->Write(" "); platform->GetLine()->Write(reply); platform->GetLine()->Write("\n"); return; } if (reply[0]) { platform->GetLine()->Write(reply); platform->GetLine()->Write("\n"); } platform->GetLine()->Write(response); platform->GetLine()->Write("\n"); return; case teacup: s = "teacup"; break; case sprinter: s = "sprinter"; break; case repetier: s = "repetier"; break; default: s = "unknown"; } if (s != 0) { snprintf(scratchString, STRING_LENGTH, "Emulation of %s is not yet supported.\n", s); platform->Message(HOST_MESSAGE, scratchString); } } // Set PID parameters (M301 or M303 command). 'heater' is the defeault heater number to use. void GCodes::SetPidParameters(GCodeBuffer *gb, int heater, char reply[STRING_LENGTH]) { if (gb->Seen('H')) { heater = gb->GetIValue(); } if (heater >= 0 && heater < HEATERS) { PidParameters pp = platform->GetPidParameters(heater); bool seen = false; if (gb->Seen('P')) { pp.kP = gb->GetFValue(); seen = true; } if (gb->Seen('I')) { pp.kI = gb->GetFValue(); seen = true; } if (gb->Seen('D')) { pp.kD = gb->GetFValue(); seen = true; } if (gb->Seen('W')) { pp.pidMax = gb->GetFValue(); seen = true; } if (gb->Seen('B')) { pp.fullBand = gb->GetFValue(); seen = true; } if (seen) { platform->SetPidParameters(heater, pp); } else { snprintf(reply, STRING_LENGTH, "P:%.2f I:%.3f D:%.2f W:%.1f B:%.1f\n", pp.kP, pp.kI, pp.kD, pp.pidMax, pp.fullBand); } } } void GCodes::SetHeaterParameters(GCodeBuffer *gb, char reply[STRING_LENGTH]) { if (gb->Seen('P')) { int heater = gb->GetIValue(); if (heater >= 0 && heater < HEATERS) { PidParameters pp = platform->GetPidParameters(heater); bool seen = false; // We must set the 25C resistance and beta together in order to calculate Rinf. Check for these first. float r25, beta; if (gb->Seen('T')) { r25 = gb->GetFValue(); seen = true; } else { r25 = pp.GetThermistorR25(); } if (gb->Seen('B')) { beta = gb->GetFValue(); seen = true; } else { beta = pp.GetBeta(); } if (seen) // if see R25 or Beta or both { pp.SetThermistorR25AndBeta(r25, beta); // recalculate Rinf } // Now do the other parameters if (gb->Seen('R')) { pp.thermistorSeriesR = gb->GetFValue(); seen = true; } if (gb->Seen('L')) { pp.adcLowOffset = gb->GetFValue(); seen = true; } if (gb->Seen('H')) { pp.adcHighOffset = gb->GetFValue(); seen = true; } if (seen) { platform->SetPidParameters(heater, pp); } else { snprintf(reply, STRING_LENGTH, "T:%.1f B:%.1f R:%.1f L:%.1f H:%.1f\n", r25, beta, pp.thermistorSeriesR, pp.adcLowOffset, pp.adcHighOffset); } } } } // If the GCode to act on is completed, this returns true, // otherwise false. It is called repeatedly for a given // GCode until it returns true for that code. bool GCodes::ActOnGcode(GCodeBuffer *gb) { // M-code parameters might contain letters T and G, e.g. in filenames. // I assume that G-and T-code parameters never contain the letter M. // Therefore we must check for an M-code first. if (gb->Seen('M')) { return HandleMcode(gb); } // I don't think a G-code parameter ever contains letter T, or a T-code ever contains letter G. // So it doesn't matter inn which order we look for them. if (gb->Seen('G')) { return HandleGcode(gb); } if (gb->Seen('T')) { return HandleTcode(gb); } // An empty buffer gets discarded HandleReply(false, gb == serialGCode, "", 'X', 0, false); return true; } bool GCodes::HandleGcode(GCodeBuffer* gb) { bool result = true; bool error = false; bool resend = false; char reply[STRING_LENGTH]; reply[0] = 0; int code = gb->GetIValue(); switch (code) { case 0: // There are no rapid moves... case 1: // Ordinary move if (waitingForMoveToComplete) { // We have already set up this move, but it does endstop checks, so wait for it to complete. // Otherwise, if the next move uses relative coordinates, it will be incorrectly calculated. result = AllMovesAreFinishedAndMoveBufferIsLoaded(); if (result) { waitingForMoveToComplete = false; } } else { int res = SetUpMove(gb); if (res == 2) { waitingForMoveToComplete = true; } result = (res == 1); } break; case 4: // Dwell result = DoDwell(gb); break; case 10: // Set offsets result = SetOffsets(gb); break; case 20: // Inches (which century are we living in, here?) distanceScale = INCH_TO_MM; break; case 21: // mm distanceScale = 1.0; break; case 28: // Home if (NoHome()) { homeX = gb->Seen(gCodeLetters[X_AXIS]); homeY = gb->Seen(gCodeLetters[Y_AXIS]); homeZ = gb->Seen(gCodeLetters[Z_AXIS]); if (NoHome()) { homeX = true; homeY = true; homeZ = true; } } result = DoHome(reply, error); break; case 30: // Z probe/manually set at a position and set that as point P result = SetSingleZProbeAtAPosition(gb); break; case 31: // Return the probe value, or set probe variables result = SetPrintZProbe(gb, reply); break; case 32: // Probe Z at multiple positions and generate the bed transform if (!(axisIsHomed[X_AXIS] && axisIsHomed[Y_AXIS])) { // We can only do bed levelling if X and Y have already been homed strncpy(reply, "Must home X and Y before bed probing", STRING_LENGTH); error = true; result = true; } else { result = DoMultipleZProbe(); } break; case 90: // Absolute coordinates drivesRelative = false; axesRelative = false; break; case 91: // Relative coordinates drivesRelative = true; // Non-axis movements (i.e. extruders) axesRelative = true; // Axis movements (i.e. X, Y and Z) break; case 92: // Set position result = SetPositions(gb); break; default: error = true; snprintf(reply, STRING_LENGTH, "invalid G Code: %s", gb->Buffer()); } if (result) { HandleReply(error, gb == serialGCode, reply, 'G', code, resend); } return result; } bool GCodes::HandleMcode(GCodeBuffer* gb) { bool result = true; bool error = false; bool resend = false; char reply[STRING_LENGTH]; reply[0] = 0; int code = gb->GetIValue(); switch (code) { case 0: // Stop case 1: // Sleep if (fileBeingPrinted.IsLive()) { fileBeingPrinted.Close(); } if (!DisableDrives()) return false; if (!StandbyHeaters()) return false; // Should never happen break; case 18: // Motors off result = DisableDrives(); break; case 20: // Deprecated... if (platform->Emulating() == me || platform->Emulating() == reprapFirmware) snprintf(reply, STRING_LENGTH, "GCode files:\n%s", platform->GetMassStorage()->FileList(platform->GetGCodeDir(), gb == serialGCode)); else snprintf(reply, STRING_LENGTH, "%s", platform->GetMassStorage()->FileList(platform->GetGCodeDir(), gb == serialGCode)); break; case 21: // Initialise SD - ignore break; case 23: // Set file to print QueueFileToPrint(gb->GetUnprecedentedString()); if (fileToPrint.IsLive() && platform->Emulating() == marlin) { snprintf(reply, STRING_LENGTH, "%s", "File opened\nFile selected\n"); } break; case 24: // Print/resume-printing the selected file if (fileBeingPrinted.IsLive()) break; fileBeingPrinted.MoveFrom(fileToPrint); break; case 25: // Pause the print fileToPrint.MoveFrom(fileBeingPrinted); break; case 27: // Report print status - Deprecated if (fileBeingPrinted.IsLive()) strncpy(reply, "SD printing.", STRING_LENGTH); else strncpy(reply, "Not SD printing.", STRING_LENGTH); break; case 28: // Write to file { const char* str = gb->GetUnprecedentedString(); bool ok = OpenFileToWrite(platform->GetGCodeDir(), str, gb); if (ok) { snprintf(reply, STRING_LENGTH, "Writing to file: %s", str); } else { snprintf(reply, STRING_LENGTH, "Can't open file %s for writing.\n", str); error = true; } } break; case 29: // End of file being written; should be intercepted before getting here platform->Message(HOST_MESSAGE, "GCode end-of-file being interpreted.\n"); break; case 30: // Delete file DeleteFile(gb->GetUnprecedentedString()); break; case 80: // ATX power on case 81: // ATX power off platform->SetAtxPower(code == 80); break; case 82: for (int8_t extruder = AXES; extruder < DRIVES; extruder++) { lastPos[extruder - AXES] = 0.0; } drivesRelative = false; break; case 83: for (int8_t extruder = AXES; extruder < DRIVES; extruder++) { lastPos[extruder - AXES] = 0.0; } drivesRelative = true; break; case 84: // Motors off - deprecated, use M18 result = DisableDrives(); break; case 85: // Set inactive time break; case 92: // Set/report steps/mm for some axes { bool seen = false; for (int8_t drive = 0; drive < DRIVES; drive++) { //Do AXES first if(gb->Seen(gCodeLetters[drive])&& driveSetDriveStepsPerUnit(drive, gb->GetFValue()); seen = true; } else if(selectedHead < 0) { // If no head selected, set the first extruder steps - best we can do if(gb->Seen('E')) { platform->SetDriveStepsPerUnit(AXES, gb->GetFValue()); seen=true; } } else if(gb->Seen('E') && ((drive-AXES) == selectedHead - 1))//then do active extruder { platform->SetDriveStepsPerUnit(AXES+selectedHead - 1, gb->GetFValue()); seen=true; } } reprap.GetMove()->SetStepHypotenuse(); if (!seen) { snprintf(reply, STRING_LENGTH, "Steps/mm: X: %f, Y: %f, Z: %f, E: ", platform->DriveStepsPerUnit(X_AXIS), platform->DriveStepsPerUnit(Y_AXIS), platform->DriveStepsPerUnit(Z_AXIS)); // Fixed to do multiple extruders. for(int8_t drive = AXES; drive < DRIVES; drive++) { sncatf(reply, STRING_LENGTH, "%.2f:", platform->DriveStepsPerUnit(drive)); } } } break; case 98: if (gb->Seen('P')) { result = DoFileCannedCycles(gb->GetString()); } break; case 99: result = FileCannedCyclesReturn(); break; case 104: // Deprecated if(gb->Seen('S') && selectedHead >= 0 && selectedHead < HEATERS) { //only sets the selected head (As set by T#) reprap.GetHeat()->SetActiveTemperature(selectedHead, gb->GetFValue()); // 0 is the bed reprap.GetHeat()->Activate(selectedHead); } break; case 105: // Deprecated... strncpy(reply, "T:", STRING_LENGTH); //FIXME - why did this decrement rather than increment through the heaters (odd behaviour) for(int8_t heater = 1; heater < HEATERS; heater++) { sncatf(reply, STRING_LENGTH, "%.1f ", reprap.GetHeat()->GetTemperature(heater)); } sncatf(reply, STRING_LENGTH, "B:%.1f", reprap.GetHeat()->GetTemperature(0)); break; case 106: // Fan on or off if (gb->Seen('I')) { coolingInverted = (gb->GetIValue() > 0); } if (gb->Seen('S')) { float f = gb->GetFValue(); f = min(f, 255.0); f = max(f, 0.0); if (coolingInverted) { platform->CoolingFan(255.0 - f); } else { platform->CoolingFan(f); } } break; case 107: // Fan off - deprecated platform->CoolingFan(coolingInverted ? 255.0 : 0.0); break; case 109: // Set extruder temperature and wait - deprecated if(gb->Seen('S') && selectedHead >= 0 && selectedHead < HEATERS) { reprap.GetHeat()->SetActiveTemperature(selectedHead, gb->GetFValue()); // 0 is the bed reprap.GetHeat()->Activate(selectedHead); result = reprap.GetHeat()->HeaterAtSetTemperature(selectedHead); } break; case 110: // Set line numbers - line numbers are dealt with in the GCodeBuffer class break; case 111: // Debug level if (gb->Seen('S')) { reprap.SetDebug(gb->GetIValue()); } break; case 112: // Emergency stop - acted upon in Webserver, but also here in case it comes from USB etc. reprap.EmergencyStop(); break; case 114: // Deprecated { const char* str = GetCurrentCoordinates(); if (str != 0) { strncpy(reply, str, STRING_LENGTH); } else { result = false; } } break; case 115: // Print firmware version snprintf(reply, STRING_LENGTH, "FIRMWARE_NAME:%s FIRMWARE_VERSION:%s ELECTRONICS:%s DATE:%s", NAME, VERSION, ELECTRONICS, DATE); break; case 116: // Wait for everything, especially set temperatures if (!AllMovesAreFinishedAndMoveBufferIsLoaded()) { return false; } result = reprap.GetHeat()->AllHeatersAtSetTemperatures(); break; //TODO M119 case 119: platform->Message(HOST_MESSAGE, "M119 - endstop status not yet implemented\n"); break; case 120: result = Push(); break; case 121: result = Pop(); break; case 122: reprap.Diagnostics(); break; case 126: // Valve open platform->Message(HOST_MESSAGE, "M126 - valves not yet implemented\n"); break; case 127: // Valve closed platform->Message(HOST_MESSAGE, "M127 - valves not yet implemented\n"); break; case 135: // Set PID sample interval break; case 140: // Set bed temperature if (gb->Seen('S')) { reprap.GetHeat()->SetActiveTemperature(0, gb->GetFValue()); reprap.GetHeat()->Activate(0); } break; case 141: // Chamber temperature platform->Message(HOST_MESSAGE, "M141 - heated chamber not yet implemented\n"); break; case 160: //number of mixing filament drives if(gb->Seen('S')) { int iValue=gb->GetIValue(); platform->SetMixingDrives(iValue); } break; case 190: // Deprecated... if(gb->Seen('S')) { float value=gb->GetFValue(); reprap.GetHeat()->SetActiveTemperature(0, value); reprap.GetHeat()->Activate(0); } result = reprap.GetHeat()->HeaterAtSetTemperature(0); break; case 201: // Set axis accelerations for (int8_t drive = 0; drive < DRIVES; drive++) { //Do AXES first if(gb->Seen(gCodeLetters[drive]) && driveSetAcceleration(drive, gb->GetFValue()); } else if(selectedHead < 0) { if(gb->Seen('E')) // Do first one - best we can do { platform->SetAcceleration(AXES, gb->GetFValue()); } }//then do active extruder else if(gb->Seen('E') && ((drive-AXES) == selectedHead-1)) { platform->SetAcceleration(AXES+selectedHead-1, gb->GetFValue()); //Set the E acceleration for the currently selected tool } else { platform->SetAcceleration(drive, -1); } } break; case 203: // Set maximum feed rates for (int8_t drive = 0; drive < DRIVES; drive++) { //Do AXES first if(gb->Seen(gCodeLetters[drive]) && driveGetFValue() * distanceScale * 0.016666667; // G Code feedrates are in mm/minute; we need mm/sec; platform->SetMaxFeedrate(drive, value); } else if(selectedHead < 0) { if(gb->Seen('E')) { float value = gb->GetFValue()*distanceScale*0.016666667; // G Code feedrates are in mm/minute; we need mm/sec; platform->SetMaxFeedrate(AXES, value); //Set the E Steps for the first E - best we can do } } else if(gb->Seen('E') && ((drive-AXES) == selectedHead-1))//then do active extruder { float value = gb->GetFValue()*distanceScale*0.016666667; // G Code feedrates are in mm/minute; we need mm/sec; platform->SetMaxFeedrate(AXES+selectedHead-1, value); //Set the E Steps for the currently selected tool } } break; case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk break; case 206: // Offset axes result = OffsetAxes(gb); break; case 208: // Set maximum axis lengths. If there is an S parameter with value 1 then we set the min value, alse we set the max value. { bool setMin; if (gb->Seen('S')) { setMin = (gb->GetIValue() == 1); } else { setMin = false; } bool setSomething = false; for (int8_t axis = 0; axis < AXES; axis++) { if (gb->Seen(gCodeLetters[axis])) { float value = gb->GetFValue() * distanceScale; if (setMin) { platform->SetAxisMinimum(axis, value); } else { platform->SetAxisMaximum(axis, value); } setSomething = true; } } if (!setSomething) { snprintf(reply, STRING_LENGTH, "X:%.1f Y:%.1f Z:%.1f", (setMin) ? platform->AxisMinimum(X_AXIS) : platform->AxisMaximum(X_AXIS), (setMin) ? platform->AxisMinimum(Y_AXIS) : platform->AxisMaximum(Y_AXIS), (setMin) ? platform->AxisMinimum(Z_AXIS) : platform->AxisMaximum(Z_AXIS) ); } } break; case 210: // Set homing feed rates for (int8_t axis = 0; axis < AXES; axis++) { if (gb->Seen(gCodeLetters[axis])) { float value = gb->GetFValue() * distanceScale * 0.016666667; platform->SetHomeFeedRate(axis, value); } } break; case 220: // set speed factor override percentage if (gb->Seen('S')) { float newSpeedFactor = gb->GetFValue()/(60 * 100.0); // include the conversion from mm/minute to mm/second if (newSpeedFactor > 0) { gFeedRate *= newSpeedFactor/speedFactor; speedFactor = newSpeedFactor; } } break; case 221: // set extrusion factor override percentage //FIXME: need to allow multiple colon-separated parameters for mixing extruders if (gb->Seen('S')) // S parameter sets the override percentage { float extrusionFactor = gb->GetFValue()/100.0; int head; if (gb->Seen('P')) // P parameter (if present) selects the head { head = gb->GetIValue(); } else { head = selectedHead; } if (head >= 1 && head < DRIVES - AXES + 1 && extrusionFactor >= 0) { extrusionFactors[head - 1] = extrusionFactor; } } break; case 301: // Set hot end PID values SetPidParameters(gb, 1, reply); break; case 302: // Allow cold extrudes break; case 304: // Set heated bed parameters SetPidParameters(gb, 0, reply); break; case 305: SetHeaterParameters(gb, reply); break; case 503: // list variable settings result = SendConfigToLine(); break; case 540: if(gb->Seen('P')) { SetMACAddress(gb); } break; case 550: // Set machine name if (gb->Seen('P')) reprap.GetWebserver()->SetName(gb->GetString()); break; case 551: // Set password if (gb->Seen('P')) { reprap.GetWebserver()->SetPassword(gb->GetString()); } break; case 552: // Set/Get IP address if (gb->Seen('P')) { SetEthernetAddress(gb, code); } else { const byte *ip = platform->IPAddress(); snprintf(reply, STRING_LENGTH, "IP address: %d.%d.%d.%d\n ", ip[0], ip[1], ip[2], ip[3]); } break; case 553: // Set/Get netmask if (gb->Seen('P')) { SetEthernetAddress(gb, code); } else { const byte *nm = platform->NetMask(); snprintf(reply, STRING_LENGTH, "Net mask: %d.%d.%d.%d\n ", nm[0], nm[1], nm[2], nm[3]); } break; case 554: // Set/Get gateway if (gb->Seen('P')) { SetEthernetAddress(gb, code); } else { const byte *gw = platform->GateWay(); snprintf(reply, STRING_LENGTH, "Gateway: %d.%d.%d.%d\n ", gw[0], gw[1], gw[2], gw[3]); } break; case 555: // Set firmware type to emulate if (gb->Seen('P')) { platform->SetEmulating((Compatibility) gb->GetIValue()); } break; case 556: // Axis compensation if (gb->Seen('S')) { float value = gb->GetFValue(); for (int8_t axis = 0; axis < AXES; axis++) { if (gb->Seen(gCodeLetters[axis])) { reprap.GetMove()->SetAxisCompensation(axis, gb->GetFValue() / value); } } } break; case 557: // Set Z probe point coordinates if (gb->Seen('P')) { int iValue = gb->GetIValue(); if (gb->Seen(gCodeLetters[X_AXIS])) reprap.GetMove()->SetXBedProbePoint(iValue, gb->GetFValue()); if (gb->Seen(gCodeLetters[Y_AXIS])) reprap.GetMove()->SetYBedProbePoint(iValue, gb->GetFValue()); } break; case 558: // Set Z probe type if (gb->Seen('P')) { platform->SetZProbeType(gb->GetIValue()); } else { snprintf(reply, STRING_LENGTH, "%d", platform->GetZProbeType()); } break; case 559: // Upload config.g or another gcode file to put in the sys directory { const char* str; if (gb->Seen('P')) { str = gb->GetString(); } else { str = platform->GetConfigFile(); } bool ok = OpenFileToWrite(platform->GetSysDir(), str, gb); if (ok) { snprintf(reply, STRING_LENGTH, "Writing to file: %s", str); } else { snprintf(reply, STRING_LENGTH, "Can't open file %s for writing.\n", str); error = true; } } break; case 560: // Upload reprap.htm or another web interface file { const char* str; if (gb->Seen('P')) { str = gb->GetString(); } else { str = INDEX_PAGE; } bool ok = OpenFileToWrite(platform->GetWebDir(), str, gb); if (ok) { snprintf(reply, STRING_LENGTH, "Writing to file: %s", str); } else { snprintf(reply, STRING_LENGTH, "Can't open file %s for writing.\n", str); error = true; } } break; case 561: reprap.GetMove()->SetIdentityTransform(); break; case 562: // Reset temperature fault - use with great caution if (gb->Seen('P')) { int iValue = gb->GetIValue(); reprap.GetHeat()->ResetFault(iValue); } break; case 563: // Define tool break; case 564: // Think outside the box? if(gb->Seen('S')) { limitAxes = (gb->GetIValue() != 0); } break; case 906: // Set Motor currents for (uint8_t i = 0; i < DRIVES; i++) { //Do AXES first if(gb->Seen(gCodeLetters[i])&& iGetFValue(); // mA platform->SetMotorCurrent(i, value); } else if(selectedHead < 0) { if(gb->Seen('E')) { float value = gb->GetFValue(); // mA platform->SetMotorCurrent(AXES, value); // Set first one - best we can do } } else //do for selected extruder { if(gb->Seen(gCodeLetters[i])) { float value = gb->GetFValue(); // mA platform->SetMotorCurrent(AXES+selectedHead-1, value); } } } break; case 998: if (gb->Seen('P')) { snprintf(reply, STRING_LENGTH, "%s", gb->GetIValue()); resend = true; } break; case 999: result = DoDwellTime(0.5); // wait half a second to allow the response to be sent back to the web server, otherwise it may retry if (result) { platform->SoftwareReset(SoftwareResetReason::user); // doesn't return } break; case 117: // in Marlin mode this means display message on LCD. We don't have an LCD so just return OK. if (platform->Emulating() == marlin) { break; } // no break default: error = true; snprintf(reply, STRING_LENGTH, "invalid M Code: %s", gb->Buffer()); } if (result) { HandleReply(error, gb == serialGCode, reply, 'M', code, resend); } return result; } bool GCodes::HandleTcode(GCodeBuffer* gb) { char reply[STRING_LENGTH]; reply[0] = 0; int code = gb->GetIValue(); if (code == selectedHead) { HandleReply(false, gb == serialGCode, reply, 'T', code, false); return true; } for (int8_t i = AXES; i < DRIVES; i++) { if(selectedHead == i - AXES + 1) { reprap.GetHeat()->Standby(selectedHead); } } bool toolNotFound = true; for (int8_t i = AXES; i < DRIVES; i++) { if(code == i - AXES + 1) { selectedHead = code; reprap.GetHeat()->Activate(selectedHead); toolNotFound = false; } } if(toolNotFound) { selectedHead = -1; } // snprintf(reply, STRING_LENGTH, "Invalid T Code: %s", gb->Buffer()); HandleReply(false, gb == serialGCode, reply, 'T', code, false); return true; } // Return the amount of filament extruded float GCodes::GetExtruderPosition(uint8_t extruder) const { return (extruder < (DRIVES - AXES)) ? lastPos[extruder] : 0; } // Pause the current SD card print. Called from the web interface. void GCodes::PauseSDPrint() { if (fileBeingPrinted.IsLive()) { fileToPrint.MoveFrom(fileBeingPrinted); fileGCode->Pause(); // if we are executing some sort of wait command, pause it until we restart } } //************************************************************************************* // This class stores a single G Code and provides functions to allow it to be parsed GCodeBuffer::GCodeBuffer(Platform* p, const char* id) { platform = p; identity = id; writingFileDirectory = NULL; // Has to be done here as Init() is called every line. } void GCodeBuffer::Init() { gcodePointer = 0; readPointer = -1; inComment = false; state = idle; } int GCodeBuffer::CheckSum() { int cs = 0; for (int i = 0; gcodeBuffer[i] != '*' && gcodeBuffer[i] != 0; i++) cs = cs ^ gcodeBuffer[i]; cs &= 0xff; // Defensive programming... return cs; } // Add a byte to the code being assembled. If false is returned, the code is // not yet complete. If true, it is complete and ready to be acted upon. bool GCodeBuffer::Put(char c) { bool result = false; gcodeBuffer[gcodePointer] = c; if (c == ';') { inComment = true; } if (c == '\n' || !c) { gcodeBuffer[gcodePointer] = 0; Init(); if (reprap.Debug() && gcodeBuffer[0] && !writingFileDirectory) // Don't bother with blank/comment lines { platform->Message(HOST_MESSAGE, identity); platform->Message(HOST_MESSAGE, gcodeBuffer); platform->Message(HOST_MESSAGE, "\n"); } // Deal with line numbers and checksums if (Seen('*')) { int csSent = GetIValue(); int csHere = CheckSum(); Seen('N'); if (csSent != csHere) { snprintf(gcodeBuffer, GCODE_LENGTH, "M998 P%d", GetIValue()); Init(); result = true; return result; } // Strip out the line number and checksum while (gcodeBuffer[gcodePointer] != ' ' && gcodeBuffer[gcodePointer]) gcodePointer++; // Anything there? if (!gcodeBuffer[gcodePointer]) { // No... gcodeBuffer[0] = 0; Init(); result = true; return result; } // Yes... gcodePointer++; int gp2 = 0; while (gcodeBuffer[gcodePointer] != '*' && gcodeBuffer[gcodePointer]) { gcodeBuffer[gp2] = gcodeBuffer[gcodePointer++]; gp2++; } gcodeBuffer[gp2] = 0; Init(); } result = true; } else { if (!inComment || writingFileDirectory) gcodePointer++; } if (gcodePointer >= GCODE_LENGTH) { platform->Message(HOST_MESSAGE, "G Code buffer length overflow.\n"); gcodePointer = 0; gcodeBuffer[0] = 0; } return result; } // Is 'c' in the G Code string? // Leave the pointer there for a subsequent read. bool GCodeBuffer::Seen(char c) { readPointer = 0; for (;;) { char b = gcodeBuffer[readPointer]; if (b == 0 || b == ';') break; if (b == c) return true; ++readPointer; } readPointer = -1; return false; } // Get a float after a G Code letter found by a call to Seen() float GCodeBuffer::GetFValue() { if (readPointer < 0) { platform->Message(HOST_MESSAGE, "GCodes: Attempt to read a GCode float before a search.\n"); readPointer = -1; return 0.0; } float result = (float) strtod(&gcodeBuffer[readPointer + 1], 0); readPointer = -1; return result; } // Get a :-separated list of floats after a key letter const void GCodeBuffer::GetFloatArray(float a[], int& length) { length = 0; if(readPointer < 0) { platform->Message(HOST_MESSAGE, "GCodes: Attempt to read a GCode float array before a search.\n"); readPointer = -1; return; } bool inList = true; while(inList) { a[length] = (float)strtod(&gcodeBuffer[readPointer + 1], 0); length++; readPointer++; while(gcodeBuffer[readPointer] && (gcodeBuffer[readPointer] != ' ') && (gcodeBuffer[readPointer] != LIST_SEPARATOR)) { readPointer++; } if(gcodeBuffer[readPointer] != LIST_SEPARATOR) { inList = false; } } readPointer = -1; } // Get a :-separated list of longs after a key letter const void GCodeBuffer::GetLongArray(long l[], int& length) { length = 0; if(readPointer < 0) { platform->Message(HOST_MESSAGE, "GCodes: Attempt to read a GCode long array before a search.\n"); readPointer = -1; return; } bool inList = true; while(inList) { l[length] = strtol(&gcodeBuffer[readPointer + 1], 0, 0); length++; readPointer++; while(gcodeBuffer[readPointer] && (gcodeBuffer[readPointer] != ' ') && (gcodeBuffer[readPointer] != LIST_SEPARATOR)) { readPointer++; } if(gcodeBuffer[readPointer] != LIST_SEPARATOR) { inList = false; } } readPointer = -1; } // Get a string after a G Code letter found by a call to Seen(). // It will be the whole of the rest of the GCode string, so strings // should always be the last parameter. const char* GCodeBuffer::GetString() { if (readPointer < 0) { platform->Message(HOST_MESSAGE, "GCodes: Attempt to read a GCode string before a search.\n"); readPointer = -1; return ""; } const char* result = &gcodeBuffer[readPointer + 1]; readPointer = -1; return result; } // This returns a pointer to the end of the buffer where a // string starts. It assumes that an M or G search has // been done followed by a GetIValue(), so readPointer will // be -1. It absorbs "M/Gnnn " (including the space) from the // start and returns a pointer to the next location. // This is provided for legacy use, in particular in the M23 // command that sets the name of a file to be printed. In // preference use GetString() which requires the string to have // been preceded by a tag letter. const char* GCodeBuffer::GetUnprecedentedString() { readPointer = 0; while (gcodeBuffer[readPointer] && gcodeBuffer[readPointer] != ' ') { readPointer++; } if (!gcodeBuffer[readPointer]) { platform->Message(HOST_MESSAGE, "GCodes: String expected but not seen.\n"); readPointer = -1; return gcodeBuffer; // Good idea? } const char* result = &gcodeBuffer[readPointer + 1]; readPointer = -1; return result; } // Get an long after a G Code letter long GCodeBuffer::GetLValue() { if (readPointer < 0) { platform->Message(HOST_MESSAGE, "GCodes: Attempt to read a GCode int before a search.\n"); readPointer = -1; return 0; } long result = strtol(&gcodeBuffer[readPointer + 1], 0, 0); readPointer = -1; return result; }