/**************************************************************************************************** RepRapFirmware - Platform: RepRapPro Ormerod with Arduino Due controller Platform contains all the code and definitions to deal with machine-dependent things such as control pins, bed area, number of extruders, tolerable accelerations and speeds and so on. ----------------------------------------------------------------------------------------------------- Version 0.1 18 November 2012 Adrian Bowyer RepRap Professional Ltd http://reprappro.com Licence: GPL ****************************************************************************************************/ #include "RepRapFirmware.h" #include "DueFlashStorage.h" #define WINDOWED_SEND_PACKETS (2) extern char _end; extern "C" char *sbrk(int i); const uint8_t memPattern = 0xA5; // Arduino initialise and loop functions // Put nothing in these other than calls to the RepRap equivalents void setup() { reprap.Init(); //reprap.GetMove()->InterruptTime(); // Uncomment this line to time the interrupt routine on startup // Fill the free memory with a pattern so that we can check for stack usage and memory corruption char* heapend = sbrk(0); register const char * stack_ptr asm ("sp"); while (heapend + 16 < stack_ptr) { *heapend++ = memPattern; } } void loop() { reprap.Spin(); } extern "C" { // This intercepts the 1ms system tick. It must return 'false', otherwise the Arduino core tick handler will be bypassed. int sysTickHook() { reprap.Tick(); return false; } } //************************************************************************************************* // PidParameters class bool PidParameters::UsePID() const { return kP >= 0; } float PidParameters::GetThermistorR25() const { return thermistorInfR * exp(thermistorBeta / (25.0 - ABS_ZERO)); } void PidParameters::SetThermistorR25AndBeta(float r25, float beta) { thermistorInfR = r25 * exp(-beta / (25.0 - ABS_ZERO)); thermistorBeta = beta; } bool PidParameters::operator==(const PidParameters& other) const { return kI == other.kI && kD == other.kD && kP == other.kP && fullBand == other.fullBand && iMin == other.iMin && iMax == other.iMax && thermistorBeta == other.thermistorBeta && thermistorInfR == other.thermistorInfR && thermistorSeriesR == other.thermistorSeriesR && adcLowOffset == other.adcLowOffset && adcHighOffset == other.adcHighOffset; } //************************************************************************************************* // Platform class Platform::Platform() : tickState(0), fileStructureInitialised(false), active(false), errorCodeBits(0) { line = new Line(); // Files massStorage = new MassStorage(this); for (int8_t i = 0; i < MAX_FILES; i++) { files[i] = new FileStore(this); } network = new Network(); } //******************************************************************************************************************* void Platform::Init() { DueFlashStorage::init(); DueFlashStorage::read(nvAddress, &nvData, sizeof(nvData)); if (nvData.magic != FlashData::magicValue) { // Nonvolatile data has not been initialized since the firmware was last written, so set up default values nvData.compatibility = me; nvData.ipAddress = IP_ADDRESS; nvData.netMask = NET_MASK; nvData.gateWay = GATE_WAY; nvData.zProbeType = 0; // Default is to use the switch nvData.irZProbeParameters.Init(); nvData.ultrasonicZProbeParameters.Init(); for (size_t i = 0; i < HEATERS; ++i) { PidParameters& pp = nvData.pidParams[i]; pp.thermistorSeriesR = defaultThermistorSeriesRs[i]; pp.SetThermistorR25AndBeta(defaultThermistor25RS[i], defaultThermistorBetas[i]); pp.kI = defaultPidKis[i]; pp.kD = defaultPidKds[i]; pp.kP = defaultPidKps[i]; pp.fullBand = defaultFullBand[i]; pp.iMin = defaultIMin[i]; pp.iMax = defaultIMax[i]; pp.adcLowOffset = pp.adcHighOffset = 0.0; } nvData.magic = FlashData::magicValue; } line->Init(); messageIndent = 0; massStorage->Init(); for (size_t i = 0; i < MAX_FILES; i++) { files[i]->Init(); } fileStructureInitialised = true; mcp.begin(); sysDir = SYS_DIR; configFile = CONFIG_FILE; // DRIVES stepPins = STEP_PINS; directionPins = DIRECTION_PINS; enablePins = ENABLE_PINS; disableDrives = DISABLE_DRIVES; lowStopPins = LOW_STOP_PINS; highStopPins = HIGH_STOP_PINS; maxFeedrates = MAX_FEEDRATES; accelerations = ACCELERATIONS; driveStepsPerUnit = DRIVE_STEPS_PER_UNIT; instantDvs = INSTANT_DVS; potWipes = POT_WIPES; senseResistor = SENSE_RESISTOR; maxStepperDigipotVoltage = MAX_STEPPER_DIGIPOT_VOLTAGE; // Z PROBE zProbePin = Z_PROBE_PIN; zProbeModulationPin = Z_PROBE_MOD_PIN; zProbeAdcChannel = PinToAdcChannel(zProbePin); InitZProbe(); // AXES axisLengths = AXIS_LENGTHS; homeFeedrates = HOME_FEEDRATES; headOffsets = HEAD_OFFSETS; // HEATERS - Bed is assumed to be the first tempSensePins = TEMP_SENSE_PINS; heatOnPins = HEAT_ON_PINS; heatSampleTime = HEAT_SAMPLE_TIME; standbyTemperatures = STANDBY_TEMPERATURES; activeTemperatures = ACTIVE_TEMPERATURES; coolingFanPin = COOLING_FAN_PIN; webDir = WEB_DIR; gcodeDir = GCODE_DIR; tempDir = TEMP_DIR; for (size_t i = 0; i < DRIVES; i++) { if (stepPins[i] >= 0) { if (i > Z_AXIS) pinModeNonDue(stepPins[i], OUTPUT); else pinMode(stepPins[i], OUTPUT); } if (directionPins[i] >= 0) { if (i > Z_AXIS) pinModeNonDue(directionPins[i], OUTPUT); else pinMode(directionPins[i], OUTPUT); } if (enablePins[i] >= 0) { if (i >= Z_AXIS) pinModeNonDue(enablePins[i], OUTPUT); else pinMode(enablePins[i], OUTPUT); } Disable(i); driveEnabled[i] = false; } for (size_t i = 0; i < AXES; i++) { if (lowStopPins[i] >= 0) { pinMode(lowStopPins[i], INPUT); digitalWrite(lowStopPins[i], HIGH); // Turn on pullup } if (highStopPins[i] >= 0) { pinMode(highStopPins[i], INPUT); digitalWrite(highStopPins[i], HIGH); // Turn on pullup } } for (size_t i = 0; i < HEATERS; i++) { if (heatOnPins[i] >= 0) { if (i == 0) // heater 0 (bed heater) is a standard Arduino PWM pin { pinMode(heatOnPins[i], OUTPUT); } else { pinModeNonDue(heatOnPins[i], OUTPUT); } } thermistorFilters[i].Init(); heaterAdcChannels[i] = PinToAdcChannel(tempSensePins[i]); // Calculate and store the ADC average sum that corresponds to an overheat condition, so that we can check is quickly in the tick ISR float thermistorOverheatResistance = nvData.pidParams[i].GetRInf() * exp(-nvData.pidParams[i].GetBeta() / (BAD_HIGH_TEMPERATURE - ABS_ZERO)); float thermistorOverheatAdcValue = (adRangeReal + 1) * thermistorOverheatResistance / (thermistorOverheatResistance + nvData.pidParams[i].thermistorSeriesR); thermistorOverheatSums[i] = (uint32_t) (thermistorOverheatAdcValue + 0.9) * numThermistorReadingsAveraged; } if (coolingFanPin >= 0) { pinMode(coolingFanPin, OUTPUT); analogWrite(coolingFanPin, (HEAT_ON == 0) ? 255 : 0); // turn auxiliary cooling fan off } InitialiseInterrupts(); addToTime = 0.0; lastTimeCall = 0; lastTime = Time(); longWait = lastTime; } void Platform::InitZProbe() { zProbeOnFilter.Init(); zProbeOffFilter.Init(); ResetZProbeMinSum(); if (nvData.zProbeType == 1 || nvData.zProbeType == 2) { pinMode(zProbeModulationPin, OUTPUT); digitalWrite(zProbeModulationPin, HIGH); // enable the IR LED SetZProbing(false); } else if (nvData.zProbeType == 3 || nvData.zProbeType == 4) { pinMode(zProbeModulationPin, OUTPUT); digitalWrite(zProbeModulationPin, LOW); // enable the ultrasonic sensor SetZProbing(false); } } int Platform::GetRawZHeight() const { return (nvData.zProbeType != 0) ? analogRead(zProbePin) : 0; } // Return the Z probe data. // The ADC readings are 12 bits, so we convert them to 10-bit readings for compatibility with the old firmware. int Platform::ZProbe() { if (zProbeOnFilter.IsValid() && zProbeOffFilter.IsValid()) { switch (nvData.zProbeType) { case 1: case 3: // Simple IR sensor, or direct-mode ultrasonic sensor return (int) ((zProbeOnFilter.GetSum() + zProbeOffFilter.GetSum()) / (8 * numZProbeReadingsAveraged)); case 2: // Modulated IR sensor. We assume that zProbeOnFilter and zprobeOffFilter average the same number of readings. // Because of noise, it is possible to get a negative reading, so allow for this. return (int) (((int32_t) zProbeOnFilter.GetSum() - (int32_t) zProbeOffFilter.GetSum()) / (4 * numZProbeReadingsAveraged)); case 4: // Ultrasonic sensor in differential mode. We assume that zProbeOnFilter and zprobeOffFilter average the same number of readings. { uint32_t sum = zProbeOnFilter.GetSum() + zProbeOffFilter.GetSum(); if (sum < zProbeMinSum) { zProbeMinSum = sum; } uint32_t total = zProbeOnFilter.GetSum() + zProbeOffFilter.GetSum(); return (int) ((total - zProbeMinSum) / (4 * numZProbeReadingsAveraged)); } default: break; } } return 0; // Z probe not turned on or not initialised yet } // Return the Z probe secondary values. int Platform::GetZProbeSecondaryValues(int& v1, int& v2) { if (zProbeOnFilter.IsValid() && zProbeOffFilter.IsValid()) { switch (nvData.zProbeType) { case 2: // modulated IR sensor v1 = (int) (zProbeOnFilter.GetSum() / (4 * numZProbeReadingsAveraged)); // pass back the reading with IR turned on return 1; case 4: // differential ultrasonic { uint32_t sum = zProbeOnFilter.GetSum() + zProbeOffFilter.GetSum(); if (sum < zProbeMinSum) { zProbeMinSum = sum; } v1 = (int) ((zProbeOnFilter.GetSum() + zProbeOffFilter.GetSum()) / (8 * numZProbeReadingsAveraged)); // pass back the raw reading v2 = (int) (zProbeMinSum / (8 * numZProbeReadingsAveraged)); // pass back the minimum found } return 2; default: break; } } return 0; } int Platform::GetZProbeType() const { return nvData.zProbeType; } float Platform::ZProbeStopHeight() const { switch (nvData.zProbeType) { case 1: case 2: return nvData.irZProbeParameters.GetStopHeight(GetTemperature(0)); case 3: case 4: return nvData.ultrasonicZProbeParameters.GetStopHeight(GetTemperature(0)); default: return 0; } } void Platform::SetZProbeType(int pt) { int newZProbeType = (pt >= 0 && pt <= 4) ? pt : 0; if (newZProbeType != nvData.zProbeType) { nvData.zProbeType = newZProbeType; WriteNvData(); } InitZProbe(); } bool Platform::GetZProbeParameters(struct ZProbeParameters& params) const { switch (nvData.zProbeType) { case 1: case 2: params = nvData.irZProbeParameters; return true; case 3: case 4: params = nvData.ultrasonicZProbeParameters; return true; default: return false; } } bool Platform::SetZProbeParameters(const struct ZProbeParameters& params) { switch (nvData.zProbeType) { case 1: case 2: if (nvData.irZProbeParameters != params) { nvData.irZProbeParameters = params; WriteNvData(); } return true; case 3: case 4: if (nvData.ultrasonicZProbeParameters != params) { nvData.ultrasonicZProbeParameters = params; WriteNvData(); } return true; default: return false; } } // Return true if we must home X and Y before we home Z (i.e. we are using a bed probe) bool Platform::MustHomeXYBeforeZ() const { return nvData.zProbeType != 0; } void Platform::WriteNvData() { DueFlashStorage::write(nvAddress, &nvData, sizeof(nvData)); } void Platform::SetZProbing(bool starting) { if (starting && nvData.zProbeType == 4) { ResetZProbeMinSum(); // look for a new minimum } } void Platform::ResetZProbeMinSum() { zProbeMinSum = adRangeReal * numZProbeReadingsAveraged * 2; } // Note: the use of floating point time will cause the resolution to degrade over time. // For example, 1ms time resolution will only be available for about half an hour from startup. // Personally, I (dc42) would rather just maintain and provide the time in milliseconds in a uint32_t. // This would wrap round after about 49 days, but that isn't difficult to handle. float Platform::Time() { unsigned long now = micros(); if (now < lastTimeCall) // Has timer overflowed? addToTime += ((float) ULONG_MAX) * TIME_FROM_REPRAP; lastTimeCall = now; return addToTime + TIME_FROM_REPRAP * (float) now; } void Platform::Exit() { Message(HOST_MESSAGE, "Platform class exited.\n"); active = false; } Compatibility Platform::Emulating() const { if (nvData.compatibility == reprapFirmware) return me; return nvData.compatibility; } void Platform::SetEmulating(Compatibility c) { if (c != me && c != reprapFirmware && c != marlin) { Message(HOST_MESSAGE, "Attempt to emulate unsupported firmware.\n"); return; } if (c == reprapFirmware) { c = me; } if (nvData.compatibility != c) { nvData.compatibility = c; WriteNvData(); } } void Platform::UpdateNetworkAddress(byte dst[4], const byte src[4]) { bool changed = false; for (uint8_t i = 0; i < 4; i++) { if (dst[i] != src[i]) { dst[i] = src[i]; changed = true; } } if (changed) { WriteNvData(); } } void Platform::SetIPAddress(byte ip[]) { UpdateNetworkAddress(nvData.ipAddress, ip); } void Platform::SetGateWay(byte gw[]) { UpdateNetworkAddress(nvData.gateWay, gw); } void Platform::SetNetMask(byte nm[]) { UpdateNetworkAddress(nvData.netMask, nm); } void Platform::StartNetwork() { network->Init(); } void Platform::Spin() { if (!active) return; network->Spin(); line->Spin(); if (Time() - lastTime < 0.006) return; lastTime = Time(); ClassReport("Platform", longWait); } //***************************************************************************************************************** // Interrupts void TC3_Handler() { TC_GetStatus(TC1, 0); reprap.Interrupt(); } void Platform::InitialiseInterrupts() { // Timer interrupt for stepper motors pmc_set_writeprotect(false); pmc_enable_periph_clk((uint32_t) TC3_IRQn); TC_Configure(TC1, 0, TC_CMR_WAVE | TC_CMR_WAVSEL_UP_RC | TC_CMR_TCCLKS_TIMER_CLOCK4); TC1 ->TC_CHANNEL[0].TC_IER = TC_IER_CPCS; TC1 ->TC_CHANNEL[0].TC_IDR = ~TC_IER_CPCS; SetInterrupt(STANDBY_INTERRUPT_RATE); // Tick interrupt for ADC conversions tickState = 0; currentHeater = 0; const uint32_t wdtTicks = 256; // number of watchdog ticks @ 32768Hz/128 before the watchdog times out (max 4095) WDT_Enable(WDT, (wdtTicks << WDT_MR_WDV_Pos) | (wdtTicks << WDT_MR_WDD_Pos) | WDT_MR_WDRSTEN); // enable watchdog, reset the mcu if it times out active = true; // this enables the tick interrupt, which keeps the watchdog happy } void Platform::DisableInterrupts() { NVIC_DisableIRQ(TC3_IRQn); } // Process a 1ms tick interrupt // This function must be kept fast so as not to disturb the stepper timing, so don't do any floating point maths in here. // This is what we need to do: // 0. Kick the watchdog. // 1. Kick off a new ADC conversion. // 2. Fetch and process the result of the last ADC conversion. // 3a. If the last ADC conversion was for the Z probe, toggle the modulation output if using a modulated IR sensor, // or update the minimum reading if using an ultrasonic sensor in differential mode. // 3b. If the last ADC reading was a thermistor reading, check for an over-temperature situation and turn off the heater if necessary. // We do this here because the usual polling loop sometimes gets stuck trying to send data to the USB port. //#define TIME_TICK_ISR 1 // define this to store the tick ISR time in errorCodeBits void Platform::Tick() { #ifdef TIME_TICK_ISR uint32_t now = micros(); #endif WDT_Restart(WDT); switch (tickState) { case 1: // last conversion started was a thermistor case 3: { ThermistorAveragingFilter& currentFilter = const_cast(thermistorFilters[currentHeater]); currentFilter.ProcessReading(GetAdcReading(heaterAdcChannels[currentHeater])); StartAdcConversion(zProbeAdcChannel); if (currentFilter.IsValid()) { uint32_t sum = currentFilter.GetSum(); if (sum < thermistorOverheatSums[currentHeater] || sum >= adDisconnectedReal * numThermistorReadingsAveraged) { // We have an over-temperature or bad reading from this thermistor, so turn off the heater // NB - the SetHeater function we call does floating point maths, but this is an exceptional situation so we allow it SetHeater(currentHeater, 0.0); errorCodeBits |= ErrorBadTemp; } } ++currentHeater; if (currentHeater == HEATERS) { currentHeater = 0; } } ++tickState; break; case 2: // last conversion started was the Z probe, with IR LED on const_cast(zProbeOnFilter).ProcessReading(GetAdcReading(zProbeAdcChannel)); StartAdcConversion(heaterAdcChannels[currentHeater]); // read a thermistor if (nvData.zProbeType == 2) // if using a modulated IR sensor { digitalWrite(Z_PROBE_MOD_PIN, LOW); // turn off the IR emitter } ++tickState; break; case 4: // last conversion started was the Z probe, with IR LED off if modulation is enabled const_cast(zProbeOffFilter).ProcessReading(GetAdcReading(zProbeAdcChannel)); // no break case 0: // this is the state after initialisation, no conversion has been started default: StartAdcConversion(heaterAdcChannels[currentHeater]); // read a thermistor if (nvData.zProbeType == 2) // if using a modulated IR sensor { digitalWrite(Z_PROBE_MOD_PIN, HIGH); // turn on the IR emitter } tickState = 1; break; } #ifdef TIME_TICK_ISR uint32_t now2 = micros(); if (now2 - now > errorCodeBits) { errorCodeBits = now2 - now; } #endif } /*static*/uint16_t Platform::GetAdcReading(adc_channel_num_t chan) { uint16_t rslt = (uint16_t) adc_get_channel_value(ADC, chan); adc_disable_channel(ADC, chan); return rslt; } /*static*/void Platform::StartAdcConversion(adc_channel_num_t chan) { adc_enable_channel(ADC, chan); adc_start(ADC ); } // Convert an Arduino Due pin number to the corresponding ADC channel number /*static*/adc_channel_num_t Platform::PinToAdcChannel(int pin) { if (pin < A0) { pin += A0; } return (adc_channel_num_t) (int) g_APinDescription[pin].ulADCChannelNumber; } //************************************************************************************************* void Platform::Diagnostics() { Message(HOST_MESSAGE, "Platform Diagnostics:\n"); } void Platform::SetDebug(int d) { switch (d) { case 1001: // test watchdog SysTick ->CTRL &= ~(SysTick_CTRL_TICKINT_Msk); // disable the system tick interrupt break; default: break; } } // Print memory stats and error codes to USB and copy them to the current webserver reply void Platform::PrintMemoryUsage() { const char *ramstart = (char *) 0x20070000; const char *ramend = (char *) 0x20088000; const char *heapend = sbrk(0); register const char * stack_ptr asm ("sp"); const struct mallinfo mi = mallinfo(); Message(HOST_MESSAGE, "\n"); Message(HOST_MESSAGE, "Memory usage:\n\n"); snprintf(scratchString, STRING_LENGTH, "Program static ram used: %d\n", &_end - ramstart); reprap.GetWebserver()->HandleReply(scratchString, false); Message(HOST_MESSAGE, scratchString); snprintf(scratchString, STRING_LENGTH, "Dynamic ram used: %d\n", mi.uordblks); reprap.GetWebserver()->AppendReply(scratchString); Message(HOST_MESSAGE, scratchString); snprintf(scratchString, STRING_LENGTH, "Recycled dynamic ram: %d\n", mi.fordblks); reprap.GetWebserver()->AppendReply(scratchString); Message(HOST_MESSAGE, scratchString); snprintf(scratchString, STRING_LENGTH, "Current stack ram used: %d\n", ramend - stack_ptr); reprap.GetWebserver()->AppendReply(scratchString); Message(HOST_MESSAGE, scratchString); const char* stack_lwm = heapend; while (stack_lwm < stack_ptr && *stack_lwm == memPattern) { ++stack_lwm; } snprintf(scratchString, STRING_LENGTH, "Maximum stack ram used: %d\n", ramend - stack_lwm); reprap.GetWebserver()->AppendReply(scratchString); Message(HOST_MESSAGE, scratchString); snprintf(scratchString, STRING_LENGTH, "Never used ram: %d\n", stack_lwm - heapend); reprap.GetWebserver()->AppendReply(scratchString); Message(HOST_MESSAGE, scratchString); // Show the reason for the last reset const char* resetReasons[8] = { "power up", "backup", "watchdog", "software", "external", "?", "?", "?" }; snprintf(scratchString, STRING_LENGTH, "Last reset reason: %s\n", resetReasons[(REG_RSTC_SR & RSTC_SR_RSTTYP_Msk)>> RSTC_SR_RSTTYP_Pos]); reprap.GetWebserver()->AppendReply(scratchString); Message(HOST_MESSAGE, scratchString); // Show the current error codes snprintf(scratchString, STRING_LENGTH, "Error status: %u\n", errorCodeBits); reprap.GetWebserver()->AppendReply(scratchString); Message(HOST_MESSAGE, scratchString); } void Platform::ClassReport(char* className, float &lastTime) { if (!reprap.Debug()) return; if (Time() - lastTime < LONG_TIME) return; lastTime = Time(); snprintf(scratchString, STRING_LENGTH, "Class %s spinning.\n", className); Message(HOST_MESSAGE, scratchString); } //=========================================================================== //=============================Thermal Settings ============================ //=========================================================================== // See http://en.wikipedia.org/wiki/Thermistor#B_or_.CE.B2_parameter_equation // BETA is the B value // RS is the value of the series resistor in ohms // R_INF is R0.exp(-BETA/T0), where R0 is the thermistor resistance at T0 (T0 is in kelvin) // Normally T0 is 298.15K (25 C). If you write that expression in brackets in the #define the compiler // should compute it for you (i.e. it won't need to be calculated at run time). // If the A->D converter has a range of 0..1023 and the measured voltage is V (between 0 and 1023) // then the thermistor resistance, R = V.RS/(1024 - V) // and the temperature, T = BETA/ln(R/R_INF) // To get degrees celsius (instead of kelvin) add -273.15 to T //#define THERMISTOR_R_INFS ( THERMISTOR_25_RS*exp(-THERMISTOR_BETAS/298.15) ) // Compute in Platform constructor // Result is in degrees celsius float Platform::GetTemperature(size_t heater) const { // If the ADC reading is N then for an ideal ADC, the input voltage is at least N/(AD_RANGE + 1) and less than (N + 1)/(AD_RANGE + 1), times the analog reference. // So we add 0.5 to to the reading to get a better estimate of the input. But first, recognise the special case of thermistor disconnected. int rawTemp = GetRawTemperature(heater); if (rawTemp >= adDisconnectedVirtual) { // Thermistor is disconnected return ABS_ZERO; } float reading = (float) rawTemp + 0.5; const PidParameters& p = nvData.pidParams[heater]; // Correct for the low and high ADC offsets reading -= p.adcLowOffset; reading *= (adRangeVirtual + 1) / (adRangeVirtual + 1 + p.adcHighOffset - p.adcLowOffset); float resistance = reading * p.thermistorSeriesR / ((adRangeVirtual + 1) - reading); return (resistance <= p.GetRInf()) ? 2000.0 // thermistor short circuit, return a high temperature : ABS_ZERO + p.GetBeta() / log(resistance / p.GetRInf()); } void Platform::SetPidParameters(size_t heater, const PidParameters& params) { if (heater < HEATERS && params != nvData.pidParams[heater]) { nvData.pidParams[heater] = params; WriteNvData(); } } const PidParameters& Platform::GetPidParameters(size_t heater) { return nvData.pidParams[heater]; } // power is a fraction in [0,1] void Platform::SetHeater(size_t heater, const float& power) { if (heatOnPins[heater] < 0) return; byte p = (byte) (255.0 * fmin(1.0, fmax(0.0, power))); if (HEAT_ON == 0) p = 255 - p; if (heater == 0) analogWrite(heatOnPins[heater], p); else analogWriteNonDue(heatOnPins[heater], p); } EndStopHit Platform::Stopped(int8_t drive) { if (nvData.zProbeType > 0) { // Z probe is used for both X and Z. if (drive != Y_AXIS) { int zProbeVal = ZProbe(); int zProbeADValue = (nvData.zProbeType == 3 || nvData.zProbeType == 4) ? nvData.ultrasonicZProbeParameters.adcValue : nvData.irZProbeParameters.adcValue; if (zProbeVal >= zProbeADValue) return lowHit; else if (zProbeVal * 10 >= zProbeADValue * 9) // if we are at/above 90% of the target value return lowNear; else return noStop; } } if (lowStopPins[drive] >= 0) { if (digitalRead(lowStopPins[drive]) == ENDSTOP_HIT) return lowHit; } if (highStopPins[drive] >= 0) { if (digitalRead(highStopPins[drive]) == ENDSTOP_HIT) return highHit; } return noStop; } //----------------------------------------------------------------------------------------------------- FileStore* Platform::GetFileStore(const char* directory, const char* fileName, bool write) { FileStore* result = NULL; if (!fileStructureInitialised) return NULL; for (int i = 0; i < MAX_FILES; i++) if (!files[i]->inUse) { files[i]->inUse = true; if (files[i]->Open(directory, fileName, write)) return files[i]; else { files[i]->inUse = false; return NULL; } } Message(HOST_MESSAGE, "Max open file count exceeded.\n"); return NULL; } MassStorage* Platform::GetMassStorage() { return massStorage; } void Platform::ReturnFileStore(FileStore* fs) { for (int i = 0; i < MAX_FILES; i++) if (files[i] == fs) { files[i]->inUse = false; return; } } void Platform::Message(char type, const char* message) { switch (type) { case FLASH_LED: // Message that is to flash an LED; the next two bytes define // the frequency and M/S ratio. break; case DISPLAY_MESSAGE: // Message that is to appear on a local display; \f and \n should be supported. case HOST_MESSAGE: default: // FileStore* m = GetFileStore(GetWebDir(), MESSAGE_FILE, true); // if(m != NULL) // { // m->GoToEnd(); // m->Write(message); // m->Close(); // } else // line->Write("Can't open message file.\n"); for (uint8_t i = 0; i < messageIndent; i++) line->Write(' '); line->Write(message); } } /********************************************************************************* Files & Communication */ MassStorage::MassStorage(Platform* p) { platform = p; } void MassStorage::Init() { hsmciPinsinit(); // Initialize SD MMC stack sd_mmc_init(); delay(20); int sdPresentCount = 0; while ((CTRL_NO_PRESENT == sd_mmc_check(0)) && (sdPresentCount < 5)) { //platform->Message(HOST_MESSAGE, "Please plug in the SD card.\n"); //delay(1000); sdPresentCount++; } if (sdPresentCount >= 5) { platform->Message(HOST_MESSAGE, "Can't find the SD card.\n"); return; } //print card info // SerialUSB.print("sd_mmc_card->capacity: "); // SerialUSB.print(sd_mmc_get_capacity(0)); // SerialUSB.print(" bytes\n"); // SerialUSB.print("sd_mmc_card->clock: "); // SerialUSB.print(sd_mmc_get_bus_clock(0)); // SerialUSB.print(" Hz\n"); // SerialUSB.print("sd_mmc_card->bus_width: "); // SerialUSB.println(sd_mmc_get_bus_width(0)); memset(&fileSystem, 0, sizeof(FATFS)); //f_mount (LUN_ID_SD_MMC_0_MEM, NULL); //int mounted = f_mount(LUN_ID_SD_MMC_0_MEM, &fileSystem); int mounted = f_mount(0, &fileSystem); if (mounted != FR_OK) { platform->Message(HOST_MESSAGE, "Can't mount filesystem 0: code "); snprintf(scratchString, STRING_LENGTH, "%d", mounted); platform->Message(HOST_MESSAGE, scratchString); platform->Message(HOST_MESSAGE, "\n"); } } const char* MassStorage::CombineName(const char* directory, const char* fileName) { int out = 0; int in = 0; // scratchString[out] = '/'; // out++; if (directory != NULL) { //if(directory[in] == '/') // in++; while (directory[in] != 0 && directory[in] != '\n') // && directory[in] != '/') { scratchString[out] = directory[in]; in++; out++; if (out >= STRING_LENGTH) { platform->Message(HOST_MESSAGE, "CombineName() buffer overflow."); out = 0; } } } //scratchString[out] = '/'; // out++; in = 0; while (fileName[in] != 0 && fileName[in] != '\n') // && fileName[in] != '/') { scratchString[out] = fileName[in]; in++; out++; if (out >= STRING_LENGTH) { platform->Message(HOST_MESSAGE, "CombineName() buffer overflow."); out = 0; } } scratchString[out] = 0; return scratchString; } // List the flat files in a directory. No sub-directories or recursion. const char* MassStorage::FileList(const char* directory, bool fromLine) { // File dir, entry; DIR dir; FILINFO entry; FRESULT res; char loc[64]; int len = 0; char fileListBracket = FILE_LIST_BRACKET; char fileListSeparator = FILE_LIST_SEPARATOR; if (fromLine) { if (platform->Emulating() == marlin) { fileListBracket = 0; fileListSeparator = '\n'; } } len = strlen(directory); strncpy(loc, directory, len - 1); loc[len - 1] = 0; // if(reprap.debug()) { // platform->Message(HOST_MESSAGE, "Opening: "); // platform->Message(HOST_MESSAGE, loc); // platform->Message(HOST_MESSAGE, "\n"); // } res = f_opendir(&dir, loc); if (res == FR_OK) { // if(reprap.debug()) { // platform->Message(HOST_MESSAGE, "Directory open\n"); // } int p = 0; // int q; int foundFiles = 0; f_readdir(&dir, 0); while ((f_readdir(&dir, &entry) == FR_OK) && (foundFiles < MAX_FILES)) { foundFiles++; if (strlen(entry.fname) > 0) { int q = 0; if (fileListBracket) fileList[p++] = fileListBracket; while (entry.fname[q]) { fileList[p++] = entry.fname[q]; //SerialUSB.print(entry.fname[q]); q++; if (p >= FILE_LIST_LENGTH - 10) // Caution... { platform->Message(HOST_MESSAGE, "FileList - directory: "); platform->Message(HOST_MESSAGE, directory); platform->Message(HOST_MESSAGE, " has too many files!\n"); return ""; } } if (fileListBracket) fileList[p++] = fileListBracket; fileList[p++] = fileListSeparator; } } if (foundFiles <= 0) return "NONE"; fileList[--p] = 0; // Get rid of the last separator return fileList; } return ""; } // Delete a file bool MassStorage::Delete(const char* directory, const char* fileName) { const char* location = platform->GetMassStorage()->CombineName(directory, fileName); if (f_unlink(location) != FR_OK) { platform->Message(HOST_MESSAGE, "Can't delete file "); platform->Message(HOST_MESSAGE, location); platform->Message(HOST_MESSAGE, "\n"); return false; } return true; } //------------------------------------------------------------------------------------------------ FileStore::FileStore(Platform* p) { platform = p; } void FileStore::Init() { bufferPointer = 0; inUse = false; writing = false; lastBufferEntry = 0; } // Open a local file (for example on an SD card). // This is protected - only Platform can access it. bool FileStore::Open(const char* directory, const char* fileName, bool write) { const char* location = platform->GetMassStorage()->CombineName(directory, fileName); writing = write; lastBufferEntry = FILE_BUF_LEN - 1; FRESULT openReturn; if (writing) { openReturn = f_open(&file, location, FA_CREATE_ALWAYS | FA_WRITE); if (openReturn != FR_OK) { platform->Message(HOST_MESSAGE, "Can't open "); platform->Message(HOST_MESSAGE, location); platform->Message(HOST_MESSAGE, " to write to. Error code: "); snprintf(scratchString, STRING_LENGTH, "%d", openReturn); platform->Message(HOST_MESSAGE, scratchString); platform->Message(HOST_MESSAGE, "\n"); return false; } bufferPointer = 0; } else { openReturn = f_open(&file, location, FA_OPEN_EXISTING | FA_READ); if (openReturn != FR_OK) { platform->Message(HOST_MESSAGE, "Can't open "); platform->Message(HOST_MESSAGE, location); platform->Message(HOST_MESSAGE, " to read from. Error code: "); snprintf(scratchString, STRING_LENGTH, "%d", openReturn); platform->Message(HOST_MESSAGE, scratchString); platform->Message(HOST_MESSAGE, "\n"); return false; } bufferPointer = FILE_BUF_LEN; } inUse = true; return true; } void FileStore::Close() { if (writing) WriteBuffer(); f_close(&file); platform->ReturnFileStore(this); inUse = false; writing = false; lastBufferEntry = 0; } void FileStore::GoToEnd() { if (!inUse) { platform->Message(HOST_MESSAGE, "Attempt to seek on a non-open file.\n"); return; } unsigned long e = Length(); f_lseek(&file, e); } unsigned long FileStore::Length() { if (!inUse) { platform->Message(HOST_MESSAGE, "Attempt to size non-open file.\n"); return 0; } return file.fsize; return 0; } int8_t FileStore::Status() { if (!inUse) return nothing; if (lastBufferEntry == FILE_BUF_LEN) return byteAvailable; if (bufferPointer < lastBufferEntry) return byteAvailable; return nothing; } void FileStore::ReadBuffer() { FRESULT readStatus; readStatus = f_read(&file, buf, FILE_BUF_LEN, &lastBufferEntry); // Read a chunk of file if (readStatus) { platform->Message(HOST_MESSAGE, "Error reading file.\n"); } bufferPointer = 0; } bool FileStore::Read(char& b) { if (!inUse) { platform->Message(HOST_MESSAGE, "Attempt to read from a non-open file.\n"); return false; } if (bufferPointer >= FILE_BUF_LEN) ReadBuffer(); if (bufferPointer >= lastBufferEntry) { b = 0; // Good idea? return false; } b = (char) buf[bufferPointer]; bufferPointer++; return true; } void FileStore::WriteBuffer() { FRESULT writeStatus; writeStatus = f_write(&file, buf, bufferPointer, &lastBufferEntry); if ((writeStatus != FR_OK) || (lastBufferEntry != bufferPointer)) { platform->Message(HOST_MESSAGE, "Error writing file. Disc may be full.\n"); } bufferPointer = 0; } void FileStore::Write(char b) { if (!inUse) { platform->Message(HOST_MESSAGE, "Attempt to write byte to a non-open file.\n"); return; } buf[bufferPointer] = b; bufferPointer++; if (bufferPointer >= FILE_BUF_LEN) WriteBuffer(); } void FileStore::Write(const char* b) { if (!inUse) { platform->Message(HOST_MESSAGE, "Attempt to write string to a non-open file.\n"); return; } int i = 0; while (b[i]) Write(b[i++]); } //*************************************************************************************************** // Serial/USB class Line::Line() { } void Line::Init() { getIndex = 0; numChars = 0; // alternateInput = NULL; // alternateOutput = NULL; SerialUSB.begin(BAUD_RATE); //while (!SerialUSB.available()); } void Line::Spin() { // Read the serial data in blocks to avoid excessive flow control if (numChars <= lineBufsize / 2) { int16_t target = SerialUSB.available() + (int16_t) numChars; if (target > lineBufsize) { target = lineBufsize; } while ((int16_t) numChars < target) { int incomingByte = SerialUSB.read(); if (incomingByte < 0) break; buffer[(getIndex + numChars) % lineBufsize] = (char) incomingByte; ++numChars; } } } //*************************************************************************************************** // Network/Ethernet class // C calls to interface with LWIP (http://savannah.nongnu.org/projects/lwip/) // These are implemented in, and called from, a modified version of httpd.c // in the network directory. extern "C" { //void ResetEther(); // Transmit data to the Network void RepRapNetworkSendOutput(char* data, int length, void* pbuf, void* pcb, void* hs); // When lwip releases storage, set the local copy of the pointer to 0 to stop // it being used again. void RepRapNetworkInputBufferReleased(void* pb) { reprap.GetPlatform()->GetNetwork()->InputBufferReleased(pb); } void RepRapNetworkConnectionError(void* h) { reprap.GetPlatform()->GetNetwork()->ConnectionError(h); reprap.GetWebserver()->ConnectionError(); } // Called to put out a message via the RepRap firmware. void RepRapNetworkMessage(char* s) { reprap.GetPlatform()->Message(HOST_MESSAGE, s); } // Called to push data into the RepRap firmware. void RepRapNetworkReceiveInput(char* data, int length, void* pbuf, void* pcb, void* hs) { reprap.GetPlatform()->GetNetwork()->ReceiveInput(data, length, pbuf, pcb, hs); } // Called when transmission of outgoing data is complete to allow // the RepRap firmware to write more. void RepRapNetworkSentPacketAcknowledged() { reprap.GetPlatform()->GetNetwork()->SentPacketAcknowledged(); } bool RepRapNetworkHasALiveClient() { return reprap.GetPlatform()->GetNetwork()->Status() & clientLive; } } // extern "C" Network::Network() { active = false; ethPinsInit(); //ResetEther(); // Construct the ring buffer netRingAddPointer = new NetRing(NULL); netRingGetPointer = netRingAddPointer; for (int8_t i = 1; i < HTTP_STATE_SIZE; i++) netRingGetPointer = new NetRing(netRingGetPointer); netRingAddPointer->SetNext(netRingGetPointer); } // Reset the network to its disconnected and ready state. void Network::Reset() { //reprap.GetPlatform()->Message(HOST_MESSAGE, "Reset.\n"); inputPointer = 0; inputLength = -1; outputPointer = 0; writeEnabled = false; closePending = false; status = nothing; sentPacketsOutstanding = 0; } void Network::CleanRing() { for (int8_t i = 0; i <= HTTP_STATE_SIZE; i++) { netRingGetPointer->Free(); netRingGetPointer = netRingGetPointer->Next(); } netRingAddPointer = netRingGetPointer; } void Network::Init() { CleanRing(); Reset(); init_ethernet(reprap.GetPlatform()->IPAddress(), reprap.GetPlatform()->NetMask(), reprap.GetPlatform()->GateWay()); active = true; sentPacketsOutstanding = 0; } void Network::Spin() { if (!active) { //ResetEther(); return; } // Keep the Ethernet running ethernet_task(); // Anything come in from the network to act on? if (!netRingGetPointer->Active()) return; // Finished reading the active ring element? if (!netRingGetPointer->ReadFinished()) { // No - Finish reading any data that's been received. if (inputPointer < inputLength) return; // Haven't started reading it yet - set that up. inputPointer = 0; inputLength = netRingGetPointer->Length(); inputBuffer = netRingGetPointer->Data(); } } // Webserver calls this to read bytes that have come in from the network bool Network::Read(char& b) { if (inputPointer >= inputLength) { inputLength = -1; inputPointer = 0; netRingGetPointer->SetReadFinished(); // Past tense... SetWriteEnable(true); //reprap.GetPlatform()->Message(HOST_MESSAGE, "Network - data read.\n"); return false; } b = inputBuffer[inputPointer]; inputPointer++; return true; } // Webserver calls this to write bytes that need to go out to the network void Network::Write(char b) { // Check for horrible things... if (!CanWrite()) { reprap.GetPlatform()->Message(HOST_MESSAGE, "Network::Write(char b) - Attempt to write when disabled.\n"); return; } if (outputPointer >= ARRAY_SIZE(outputBuffer)) { reprap.GetPlatform()->Message(HOST_MESSAGE, "Network::Write(char b) - Output buffer overflow! \n"); return; } // Add the byte to the buffer outputBuffer[outputPointer] = b; outputPointer++; // Buffer full? If so, send it. if (outputPointer == ARRAY_SIZE(outputBuffer)) { #if WINDOWED_SEND_PACKETS > 1 ++sentPacketsOutstanding; #else SetWriteEnable(false); // Stop further writing from Webserver until the network tells us that this has gone #endif RepRapNetworkSendOutput(outputBuffer, outputPointer, netRingGetPointer->Pbuf(), netRingGetPointer->Pcb(), netRingGetPointer->Hs()); outputPointer = 0; } } void Network::InputBufferReleased(void* pb) { if (netRingGetPointer->Pbuf() != pb) { reprap.GetPlatform()->Message(HOST_MESSAGE, "Network::InputBufferReleased() - Pointers don't match!\n"); return; } netRingGetPointer->ReleasePbuf(); } void Network::ConnectionError(void* h) { // h points to an http state block that the caller is about to release, so we need to stop referring to it. // The state block is usually but not always in use by the current http request being processed, in which case we abandon the current request. if (netRingGetPointer != netRingAddPointer && netRingGetPointer->Hs() == h) { netRingGetPointer->Free(); netRingGetPointer = netRingGetPointer->Next(); } // Reset the network layer. In particular, this clears the output buffer to make sure nothing more gets sent, // and sets status to 'nothing' so that we can accept another connection attempt. Reset(); } void Network::ReceiveInput(char* data, int length, void* pbuf, void* pcb, void* hs) { status = clientLive; if (netRingAddPointer->Active()) { reprap.GetPlatform()->Message(HOST_MESSAGE, "Network::ReceiveInput() - Ring buffer full!\n"); return; } netRingAddPointer->Set(data, length, pbuf, pcb, hs); netRingAddPointer = netRingAddPointer->Next(); //reprap.GetPlatform()->Message(HOST_MESSAGE, "Network - input received.\n"); } bool Network::CanWrite() const { #if WINDOWED_SEND_PACKETS > 1 return writeEnabled && sentPacketsOutstanding < WINDOWED_SEND_PACKETS; #else return writeEnabled; #endif } void Network::SetWriteEnable(bool enable) { writeEnabled = enable; if (!writeEnabled) return; if (closePending) Close(); } void Network::SentPacketAcknowledged() { #if WINDOWED_SEND_PACKETS > 1 if (sentPacketsOutstanding != 0) { --sentPacketsOutstanding; } if (closePending && sentPacketsOutstanding == 0) { Close(); } #else SetWriteEnable(true); #endif } // This is not called for data, only for internally- // generated short strings at the start of a transmission, // so it should never overflow the buffer (which is checked // anyway). void Network::Write(const char* s) { int i = 0; while (s[i]) Write(s[i++]); } void Network::Close() { if (Status() && clientLive) { if (outputPointer > 0) { SetWriteEnable(false); RepRapNetworkSendOutput(outputBuffer, outputPointer, netRingGetPointer->Pbuf(), netRingGetPointer->Pcb(), netRingGetPointer->Hs()); outputPointer = 0; closePending = true; return; } RepRapNetworkSendOutput((char*) NULL, 0, netRingGetPointer->Pbuf(), netRingGetPointer->Pcb(), netRingGetPointer->Hs()); netRingGetPointer->Free(); netRingGetPointer = netRingGetPointer->Next(); //reprap.GetPlatform()->Message(HOST_MESSAGE, "Network - output sent and closed.\n"); } else reprap.GetPlatform()->Message(HOST_MESSAGE, "Network::Close() - Attempt to close a closed connection!\n"); closePending = false; status = nothing; //Reset(); } int8_t Network::Status() const { if (inputPointer >= inputLength) return status; return status | clientConnected | byteAvailable; } NetRing::NetRing(NetRing* n) { next = n; Free(); } void NetRing::Free() { pbuf = 0; pcb = 0; hs = 0; data = ""; length = 0; read = false; active = false; } bool NetRing::Set(char* d, int l, void* pb, void* pc, void* h) { if (active) return false; pbuf = pb; pcb = pc; hs = h; data = d; length = l; read = false; active = true; return true; } NetRing* NetRing::Next() { return next; } char* NetRing::Data() { return data; } int NetRing::Length() { return length; } bool NetRing::ReadFinished() { return read; } void NetRing::SetReadFinished() { read = true; } bool NetRing::Active() { return active; } void NetRing::SetNext(NetRing* n) { next = n; } void* NetRing::Pbuf() { return pbuf; } void NetRing::ReleasePbuf() { pbuf = 0; } void* NetRing::Pcb() { return pcb; } void* NetRing::Hs() { return hs; } void NetRing::ReleaseHs() { hs = 0; }