/* * Move.cpp * * Created on: 7 Dec 2014 * Author: David */ #include "RepRapFirmware.h" void DeltaParameters::Init() { deltaMode = false; diagonal = 0.0; radius = 0.0; printRadius = defaultPrintRadius; homedHeight = defaultDeltaHomedHeight; isEquilateral = true; for (size_t axis = 0; axis < AXES; ++axis) { endstopAdjustments[axis] = 0.0; towerX[axis] = towerY[axis] = 0.0; } } void DeltaParameters::SetRadius(float r) { radius = r; isEquilateral = true; const float cos30 = sqrtf(3.0)/2.0; const float sin30 = 0.5; towerX[A_AXIS] = -(r * cos30); towerX[B_AXIS] = r * cos30; towerX[C_AXIS] = 0.0; towerY[A_AXIS] = towerY[B_AXIS] = -(r * sin30); towerY[C_AXIS] = r; Recalc(); } void DeltaParameters::Recalc() { deltaMode = (radius > 0.0 && diagonal > radius); if (deltaMode) { Xbc = towerX[C_AXIS] - towerX[B_AXIS]; Xca = towerX[A_AXIS] - towerX[C_AXIS]; Xab = towerX[B_AXIS] - towerX[A_AXIS]; Ybc = towerY[C_AXIS] - towerY[B_AXIS]; Yca = towerY[A_AXIS] - towerY[C_AXIS]; Yab = towerY[B_AXIS] - towerY[A_AXIS]; coreFa = fsquare(towerX[A_AXIS]) + fsquare(towerY[A_AXIS]); coreFb = fsquare(towerX[B_AXIS]) + fsquare(towerY[B_AXIS]); coreFc = fsquare(towerX[C_AXIS]) + fsquare(towerY[C_AXIS]); Q = 2 * (Xca * Yab - Xab * Yca); Q2 = fsquare(Q); D2 = fsquare(diagonal); // Calculate the base carriage height when the printer is homed. const float tempHeight = diagonal; // any sensible height will do here, probably even zero float machinePos[AXES]; InverseTransform(tempHeight + endstopAdjustments[X_AXIS], tempHeight + endstopAdjustments[Y_AXIS], tempHeight + endstopAdjustments[X_AXIS], machinePos); homedCarriageHeight = homedHeight + tempHeight - machinePos[Z_AXIS]; } } // Make the average of the endstop adjustments zero, without changing the individual homed carriage heights void DeltaParameters::NormaliseEndstopAdjustments() { const float eav = (endstopAdjustments[A_AXIS] + endstopAdjustments[B_AXIS] + endstopAdjustments[C_AXIS])/3.0; endstopAdjustments[A_AXIS] -= eav; endstopAdjustments[B_AXIS] -= eav; endstopAdjustments[C_AXIS] -= eav; homedHeight += eav; homedCarriageHeight += eav; // no need for a full recalc, this is sufficient } // Calculate the motor position for a single tower from a Cartesian coordinate float DeltaParameters::Transform(const float machinePos[AXES], size_t axis) const { return machinePos[Z_AXIS] + sqrt(D2 - fsquare(machinePos[X_AXIS] - towerX[axis]) - fsquare(machinePos[Y_AXIS] - towerY[axis])); } void DeltaParameters::InverseTransform(float Ha, float Hb, float Hc, float machinePos[AXES]) const { const float Fa = coreFa + fsquare(Ha); const float Fb = coreFb + fsquare(Hb); const float Fc = coreFc + fsquare(Hc); // debugPrintf("Ha=%f Hb=%f Hc=%f Fa=%f Fb=%f Fc=%f Xbc=%f Xca=%f Xab=%f Ybc=%f Yca=%f Yab=%f\n", // Ha, Hb, Hc, Fa, Fb, Fc, Xbc, Xca, Xab, Ybc, Yca, Yab); // Setup PQRSU such that x = -(S - uz)/P, y = (P - Rz)/Q const float P = (Xbc * Fa) + (Xca * Fb) + (Xab * Fc); const float S = (Ybc * Fa) + (Yca * Fb) + (Yab * Fc); const float R = 2 * ((Xbc * Ha) + (Xca * Hb) + (Xab * Hc)); const float U = 2 * ((Ybc * Ha) + (Yca * Hb) + (Yab * Hc)); // debugPrintf("P= %f R=%f S=%f U=%f Q=%f\n", P, R, S, U, Q); const float R2 = fsquare(R), U2 = fsquare(U); float A = U2 + R2 + Q2; float minusHalfB = S * U + P * R + Ha * Q2 + towerX[A_AXIS] * U * Q - towerY[A_AXIS] * R * Q; float C = fsquare(S + towerX[A_AXIS] * Q) + fsquare(P - towerY[A_AXIS] * Q) + (fsquare(Ha) - D2) * Q2; // debugPrintf("A=%f minusHalfB=%f C=%f\n", A, minusHalfB, C); float z = (minusHalfB - sqrtf(fsquare(minusHalfB) - A * C)) / A; machinePos[X_AXIS] = (U * z - S) / Q; machinePos[Y_AXIS] = (P - R * z) / Q; machinePos[Z_AXIS] = z; } // Compute the derivative of height with respect to a parameter at the specified motor endpoints. // 'deriv' indicates the parameter as follows: // 0, 1, 2 = X, Y, Z tower endstop adjustments // 3, 4 = X, Y tower X position // 5 = Z tower Y position // 6 = diagonal rod length // 7 = delta radius (only if isEquilateral is true) float DeltaParameters::ComputeDerivative(unsigned int deriv, float ha, float hb, float hc) { const float perturb = 0.2; // perturbation amount in mm DeltaParameters hiParams(*this), loParams(*this); switch(deriv) { case 0: case 1: case 2: break; case 3: case 4: hiParams.towerX[deriv - 3] += perturb; loParams.towerX[deriv - 3] -= perturb; break; case 5: { const float yAdj = perturb * (1.0/3.0); hiParams.towerY[A_AXIS] -= yAdj; hiParams.towerY[B_AXIS] -= yAdj; hiParams.towerY[C_AXIS] += (perturb - yAdj); loParams.towerY[A_AXIS] += yAdj; loParams.towerY[B_AXIS] += yAdj; loParams.towerY[C_AXIS] -= (perturb - yAdj); } break; case 6: hiParams.diagonal += perturb; loParams.diagonal -= perturb; break; case 7: hiParams.SetRadius(radius + perturb); loParams.SetRadius(radius - perturb); break; } hiParams.Recalc(); loParams.Recalc(); float newPos[AXES]; hiParams.InverseTransform((deriv == 0) ? ha + perturb : ha, (deriv == 1) ? hb + perturb : hb, (deriv == 2) ? hc + perturb : hc, newPos); float zHi = newPos[Z_AXIS]; loParams.InverseTransform((deriv == 0) ? ha - perturb : ha, (deriv == 1) ? hb - perturb : hb, (deriv == 2) ? hc - perturb : hc, newPos); float zLo = newPos[Z_AXIS]; return (zHi - zLo)/(2 * perturb); } // Perform 3, 4, 6 or 7-factor adjustment. // The input vector contains the following parameters in this order: // X, Y and Z endstop adjustments // If we are doing 4-factor adjustment, the next argument is the delta radius. Otherwise: // X tower X position adjustment // Y tower X position adjustment // Z tower Y position adjustment // Diagonal rod length adjustment void DeltaParameters::Adjust(size_t numFactors, const float v[]) { const float oldCarriageHeightA = GetHomedCarriageHeight(A_AXIS); // save for later // Update endstop adjustments endstopAdjustments[A_AXIS] += v[0]; endstopAdjustments[B_AXIS] += v[1]; endstopAdjustments[C_AXIS] += v[2]; NormaliseEndstopAdjustments(); if (numFactors == 4) { // 4-factor adjustment, so update delta radius SetRadius(radius + v[3]); // this sets isEquilateral true, recalculates tower positions, then calls Recalc() } else if (numFactors > 3) { // 6- or 7-factor adjustment towerX[A_AXIS] += v[3]; towerX[B_AXIS] += v[4]; const float yAdj = v[5] * (1.0/3.0); towerY[A_AXIS] -= yAdj; towerY[B_AXIS] -= yAdj; towerY[C_AXIS] += (v[5] - yAdj); isEquilateral = false; if (numFactors == 7) { diagonal += v[6]; } Recalc(); } // Adjusting the diagonal and the tower positions affects the homed carriage height. // We need to adjust homedHeight to allow for this, to get the change that was requested in the endstop corrections. const float heightError = GetHomedCarriageHeight(A_AXIS) - oldCarriageHeightA - v[0]; homedHeight -= heightError; homedCarriageHeight -= heightError; } void DeltaParameters::PrintParameters(StringRef& reply, bool full) { reply.printf("Endstops X%.2f Y%.2f Z%.2f, height %.2f, diagonal %.2f, ", endstopAdjustments[A_AXIS], endstopAdjustments[B_AXIS], endstopAdjustments[C_AXIS], homedHeight, diagonal); if (isEquilateral && !full) { reply.catf("radius %.2f\n", radius); } else { reply.catf("towers (%.2f,%.2f) (%.2f,%.2f) (%.2f,%.2f)\n", towerX[A_AXIS], towerY[A_AXIS], towerX[B_AXIS], towerY[B_AXIS], towerX[C_AXIS], towerY[C_AXIS]); } } Move::Move(Platform* p, GCodes* g) : currentDda(NULL) { active = false; // Build the DDA ring DDA *dda = new DDA(NULL); ddaRingGetPointer = ddaRingAddPointer = dda; for (size_t i = 1; i < DdaRingLength; i++) { DDA *oldDda = dda; dda = new DDA(dda); oldDda->SetPrevious(dda); } ddaRingAddPointer->SetNext(dda); dda->SetPrevious(ddaRingAddPointer); } void Move::Init() { // Reset Cartesian mode deltaParams.Init(); coreXYMode = 0; // Empty the ring ddaRingGetPointer = ddaRingAddPointer; DDA *dda = ddaRingAddPointer; do { dda->Init(); dda = dda->GetNext(); } while (dda != ddaRingAddPointer); currentDda = nullptr; addNoMoreMoves = false; // Clear the transforms SetIdentityTransform(); tanXY = tanYZ = tanXZ = 0.0; // Put the origin on the lookahead ring with default velocity in the previous position to the first one that will be used. // Do this by calling SetLiveCoordinates and SetPositions, so that the motor coordinates will be correct too even on a delta. float move[DRIVES]; for (size_t i = 0; i < DRIVES; i++) { move[i] = 0.0; reprap.GetPlatform()->SetDirection(i, FORWARDS); // DC: I don't see any reason why we do this } SetLiveCoordinates(move); SetPositions(move); size_t slow = reprap.GetPlatform()->SlowestDrive(); currentFeedrate = reprap.GetPlatform()->HomeFeedRate(slow); // Set up default bed probe points. This is only a guess, because we don't know the bed size yet. for (size_t point = 0; point < MaxProbePoints; point++) { if (point < 4) { xBedProbePoints[point] = (0.3 + 0.6*(float)(point%2))*reprap.GetPlatform()->AxisMaximum(X_AXIS); yBedProbePoints[point] = (0.0 + 0.9*(float)(point/2))*reprap.GetPlatform()->AxisMaximum(Y_AXIS); } zBedProbePoints[point] = 0.0; probePointSet[point] = unset; } xRectangle = 1.0/(0.8*reprap.GetPlatform()->AxisMaximum(X_AXIS)); yRectangle = xRectangle; longWait = reprap.GetPlatform()->Time(); idleTimeout = defaultIdleTimeout; iState = IdleState::idle; idleCount = 0; simulating = false; simulationTime = 0.0; active = true; } void Move::Exit() { reprap.GetPlatform()->Message(BOTH_MESSAGE, "Move class exited.\n"); active = false; } void Move::Spin() { if (!active) { return; } if (idleCount < 1000) { ++idleCount; } // See if we can add another move to the ring if (!addNoMoreMoves && ddaRingAddPointer->GetState() == DDA::empty) { DDA *dda = ddaRingAddPointer; if (reprap.Debug(moduleMove)) { dda->PrintIfHasStepError(); } // In order to react faster to speed and extrusion rate changes, only add more moves if the total duration of // all un-frozen moves is less than 2 seconds, or the total duration of all but the first un-frozen move is // less than 0.5 seconds. float unPreparedTime = 0.0; float prevMoveTime = 0.0; for(;;) { dda = dda->GetPrevious(); if (dda->GetState() != DDA::provisional) { break; } unPreparedTime += prevMoveTime; prevMoveTime = dda->CalcTime(); } if (unPreparedTime < 0.5 || unPreparedTime + prevMoveTime < 2.0) { // If there's a G Code move available, add it to the DDA ring for processing. float nextMove[DRIVES + 1]; EndstopChecks endStopsToCheck; uint8_t moveType; FilePosition filePos; if (reprap.GetGCodes()->ReadMove(nextMove, endStopsToCheck, moveType, filePos)) { // We have a new move currentFeedrate = nextMove[DRIVES]; // might be G1 with just an F field #if 0 //*** This code is not finished yet *** // If we are doing bed compensation and the move crosses a compensation boundary by a significant amount, // segment it so that we can apply proper bed compensation // Issues here: // 1. Are there enough DDAs? need to make nextMove static and remember whether we have the remains of a move in there. // 2. Pause/restart: if we restart a segmented move when we have already executed part of it, we will extrude too much. // Perhaps remember how much of the last move we executed? Or always insist on completing all the segments in a move? bool isSegmented; do { float tempMove[DRIVES + 1]; memcpy(tempMove, nextMove, sizeof(tempMove)); isSegmented = SegmentMove(tempMove); if (isSegmented) { // Extruder moves are relative, so we need to adjust the extrusion amounts in the original move for (size_t drive = AXES; drive < DRIVES; ++drive) { nextMove[drive] -= tempMove[drive]; } } bool doMotorMapping = (moveType == 0) || (moveType == 1 && !IsDeltaMode()); if (doMotorMapping) { Transform(tempMove); } if (ddaRingAddPointer->Init(tempMove, endStopsToCheck, doMotorMapping, filePos)) { ddaRingAddPointer = ddaRingAddPointer->GetNext(); idleCount = 0; } } while (isSegmented); #else // Use old code bool doMotorMapping = (moveType == 0) || (moveType == 1 && !IsDeltaMode()); if (doMotorMapping) { Transform(nextMove); } if (ddaRingAddPointer->Init(nextMove, endStopsToCheck, doMotorMapping, filePos)) { ddaRingAddPointer = ddaRingAddPointer->GetNext(); idleCount = 0; } #endif } } } if (simulating) { if (idleCount > 10 && !DDARingEmpty()) { // No move added this time, so simulate executing one already in the queue DDA *dda = ddaRingGetPointer; simulationTime += dda->CalcTime(); liveCoordinatesValid = dda->FetchEndPosition(const_cast(liveEndPoints), const_cast(liveCoordinates)); dda->Release(); ddaRingGetPointer = ddaRingGetPointer->GetNext(); } } else { // See whether we need to kick off a move DDA *cdda = currentDda; // currentDda is volatile, so copy it if (cdda == nullptr) { // No DDA is executing, so start executing a new one if possible if (idleCount > 10) // better to have a few moves in the queue so that we can do lookahead { DDA *dda = ddaRingGetPointer; if (dda->GetState() == DDA::provisional) { dda->Prepare(); } if (dda->GetState() == DDA::frozen) { cpu_irq_disable(); // must call StartNextMove and Interrupt with interrupts disabled if (StartNextMove(Platform::GetInterruptClocks())) // start the next move if none is executing already { Interrupt(); } cpu_irq_enable(); iState = IdleState::busy; } else if (iState == IdleState::busy && !reprap.GetGCodes()->IsPaused() && idleTimeout > 0.0) { lastMoveTime = reprap.GetPlatform()->Time(); // record when we first noticed that the machine was idle iState = IdleState::timing; } else if (iState == IdleState::timing && reprap.GetPlatform()->Time() - lastMoveTime >= idleTimeout) { // Put all drives in idle hold for (size_t drive = 0; drive < DRIVES; ++drive) { reprap.GetPlatform()->SetDriveIdle(drive); } iState = IdleState::idle; } } } else { // See whether we need to prepare any moves int32_t preparedTime = 0; DDA::DDAState st; while ((st = cdda->GetState()) == DDA:: completed || st == DDA::executing || st == DDA::frozen) { preparedTime += cdda->GetTimeLeft(); cdda = cdda->GetNext(); } // If the number of prepared moves will execute in less than the minimum time, prepare another move while (st == DDA::provisional && preparedTime < (int32_t)(DDA::stepClockRate/8)) // prepare moves one eighth of a second ahead of when they will be needed { cdda->Prepare(); preparedTime += cdda->GetTimeLeft(); cdda = cdda->GetNext(); st = cdda->GetState(); } } } reprap.GetPlatform()->ClassReport(longWait); } // Pause the print as soon as we can. // Return the file position of the first queue move we are going to skip, or noFilePosition we we are not skipping any moves. // If we skipped any moves then we update 'positions' to the positions and feed rate expected for the next move, else we leave them alone. FilePosition Move::PausePrint(float positions[DRIVES+1]) { // Find a move we can pause after. // Ideally, we would adjust a move if necessary and possible so that we can pause after it, but for now we don't do that. // There are a few possibilities: // 1. There are no moves in the queue. // 2. There is a currently-executing move, and possibly some more in the queue. // 3. There are moves in the queue, but we haven't started executing them yet. Unlikely, but possible. const DDA *savedDdaRingAddPointer = ddaRingAddPointer; // First, see if there is a currently-executing move, and if so, whether we can safely pause at the end of it cpu_irq_disable(); DDA *dda = currentDda; if (dda != nullptr) { if (dda->CanPause()) { ddaRingAddPointer = dda->GetNext(); } else { // We can't safely pause after the currently-executing move because its end speed is too high so we may miss steps. // Search for the next move that we can safely stop after. dda = ddaRingGetPointer; while (dda != ddaRingAddPointer) { if (dda->CanPause()) { ddaRingAddPointer = dda->GetNext(); break; } dda = dda->GetNext(); } } } else { ddaRingAddPointer = ddaRingGetPointer; } cpu_irq_enable(); FilePosition fPos = noFilePosition; if (ddaRingAddPointer != savedDdaRingAddPointer) { // We are going to skip some moves. dda points to the last move we are going to print. for (size_t axis = 0; axis < AXES; ++axis) { positions[axis] = dda->GetEndCoordinate(axis, false); } positions[DRIVES] = dda->GetRequestedSpeed(); dda = ddaRingAddPointer; do { if (fPos == noFilePosition) { fPos = dda->GetFilePosition(); } dda->Release(); dda = dda->GetNext(); } while (dda != savedDdaRingAddPointer); } else { GetCurrentUserPosition(positions, 0); } return fPos; } uint32_t maxReps = 0; #if 0 extern uint32_t sqSum1, sqSum2, sqCount, sqErrors, lastRes1, lastRes2; extern uint64_t lastNum; #endif void Move::Diagnostics() { reprap.GetPlatform()->AppendMessage(BOTH_MESSAGE, "Move Diagnostics:\n"); reprap.GetPlatform()->AppendMessage(BOTH_MESSAGE, "MaxReps: %u\n", maxReps); maxReps = 0; #if 0 if (sqCount != 0) { reprap.GetPlatform()->AppendMessage(BOTH_MESSAGE, "Average sqrt times %.2f, %.2f, count %u, errors %u, last %" PRIu64 " %u %u\n", (float)sqSum1/sqCount, (float)sqSum2/sqCount, sqCount, sqErrors, lastNum, lastRes1, lastRes2); sqSum1 = sqSum2 = sqCount = sqErrors = 0; } #endif } // These are the actual numbers we want in the positions, so don't transform them. void Move::SetPositions(const float move[DRIVES]) { if (DDARingEmpty()) { ddaRingAddPointer->GetPrevious()->SetPositions(move); } else { reprap.GetPlatform()->Message(BOTH_ERROR_MESSAGE, "SetPositions called when DDA ring not empty\n"); } } void Move::EndPointToMachine(const float coords[], int32_t ep[], size_t numDrives) const { MotorTransform(coords, ep); for (size_t drive = AXES; drive < numDrives; ++drive) { ep[drive] = MotorEndPointToMachine(drive, coords[drive]); } } void Move::SetFeedrate(float feedRate) { if (DDARingEmpty()) { DDA *lastMove = ddaRingAddPointer->GetPrevious(); currentFeedrate = feedRate; lastMove->SetFeedRate(feedRate); } else { reprap.GetPlatform()->Message(BOTH_ERROR_MESSAGE, "SetFeedrate called when DDA ring not empty\n"); } } // Returns steps from units (mm) for a particular drive int32_t Move::MotorEndPointToMachine(size_t drive, float coord) { return (int32_t)roundf(coord * reprap.GetPlatform()->DriveStepsPerUnit(drive)); } // Convert motor coordinates to machine coordinates // Used after homing and after individual motor moves. // This is computationally expensive on a delta, so only call it when necessary, and never from the step ISR. void Move::MachineToEndPoint(const int32_t motorPos[], float machinePos[], size_t numDrives) const { const float *stepsPerUnit = reprap.GetPlatform()->GetDriveStepsPerUnit(); // Convert the axes if (IsDeltaMode()) { deltaParams.InverseTransform(motorPos[A_AXIS]/stepsPerUnit[A_AXIS], motorPos[B_AXIS]/stepsPerUnit[B_AXIS], motorPos[C_AXIS]/stepsPerUnit[C_AXIS], machinePos); #if 0 // We don't do inverse transforms very often, so if debugging is enabled, print them if (reprap.Debug(moduleMove)) { debugPrintf("Inverse transformed %d %d %d to %f %f %f\n", motorPos[0], motorPos[1], motorPos[2], machinePos[0], machinePos[1], machinePos[2]); } #endif } else { switch (coreXYMode) { case 1: // CoreXY machinePos[X_AXIS] = ((motorPos[X_AXIS] * stepsPerUnit[Y_AXIS]) - (motorPos[Y_AXIS] * stepsPerUnit[X_AXIS]))/(2 * stepsPerUnit[X_AXIS] * stepsPerUnit[Y_AXIS]); machinePos[Y_AXIS] = ((motorPos[X_AXIS] * stepsPerUnit[Y_AXIS]) + (motorPos[Y_AXIS] * stepsPerUnit[X_AXIS]))/(2 * stepsPerUnit[X_AXIS] * stepsPerUnit[Y_AXIS]); machinePos[Z_AXIS] = motorPos[Z_AXIS]/stepsPerUnit[Z_AXIS]; break; case 2: // CoreXZ machinePos[X_AXIS] = ((motorPos[X_AXIS] * stepsPerUnit[Z_AXIS]) - (motorPos[Z_AXIS] * stepsPerUnit[X_AXIS]))/(2 * stepsPerUnit[X_AXIS] * stepsPerUnit[Z_AXIS]); machinePos[Y_AXIS] = motorPos[Y_AXIS]/stepsPerUnit[Y_AXIS]; machinePos[Z_AXIS] = ((motorPos[X_AXIS] * stepsPerUnit[Z_AXIS]) + (motorPos[Z_AXIS] * stepsPerUnit[X_AXIS]))/(2 * stepsPerUnit[X_AXIS] * stepsPerUnit[Z_AXIS]); break; case 3: // CoreYZ machinePos[X_AXIS] = motorPos[X_AXIS]/stepsPerUnit[X_AXIS]; machinePos[Y_AXIS] = ((motorPos[Y_AXIS] * stepsPerUnit[Z_AXIS]) - (motorPos[Z_AXIS] * stepsPerUnit[Y_AXIS]))/(2 * stepsPerUnit[Y_AXIS] * stepsPerUnit[Z_AXIS]); machinePos[Z_AXIS] = ((motorPos[Y_AXIS] * stepsPerUnit[Z_AXIS]) + (motorPos[Z_AXIS] * stepsPerUnit[Y_AXIS]))/(2 * stepsPerUnit[Y_AXIS] * stepsPerUnit[Z_AXIS]); break; default: machinePos[X_AXIS] = motorPos[X_AXIS]/stepsPerUnit[X_AXIS]; machinePos[Y_AXIS] = motorPos[Y_AXIS]/stepsPerUnit[Y_AXIS]; machinePos[Z_AXIS] = motorPos[Z_AXIS]/stepsPerUnit[Z_AXIS]; break; } } // Convert the extruders for (size_t drive = AXES; drive < numDrives; ++drive) { machinePos[drive] = motorPos[drive]/stepsPerUnit[drive]; } } // Convert Cartesian coordinates to delta motor steps void Move::MotorTransform(const float machinePos[AXES], int32_t motorPos[AXES]) const { if (IsDeltaMode()) { for (size_t axis = 0; axis < AXES; ++axis) { motorPos[axis] = MotorEndPointToMachine(axis, deltaParams.Transform(machinePos, axis)); } if (reprap.Debug(moduleMove) && reprap.Debug(moduleDda)) { debugPrintf("Transformed %f %f %f to %d %d %d\n", machinePos[0], machinePos[1], machinePos[2], motorPos[0], motorPos[1], motorPos[2]); } } else { switch (coreXYMode) { case 1: motorPos[X_AXIS] = MotorEndPointToMachine(X_AXIS, machinePos[X_AXIS] + machinePos[Y_AXIS]); motorPos[Y_AXIS] = MotorEndPointToMachine(Y_AXIS, machinePos[Y_AXIS] - machinePos[X_AXIS]); motorPos[Z_AXIS] = MotorEndPointToMachine(Z_AXIS, machinePos[Z_AXIS]); break; case 2: motorPos[X_AXIS] = MotorEndPointToMachine(X_AXIS, machinePos[X_AXIS] + machinePos[Z_AXIS]); motorPos[Y_AXIS] = MotorEndPointToMachine(Y_AXIS, machinePos[Y_AXIS]); motorPos[Z_AXIS] = MotorEndPointToMachine(Z_AXIS, machinePos[Z_AXIS] - machinePos[X_AXIS]); break; case 3: motorPos[X_AXIS] = MotorEndPointToMachine(X_AXIS, machinePos[X_AXIS]); motorPos[Y_AXIS] = MotorEndPointToMachine(Y_AXIS, machinePos[Y_AXIS] + machinePos[Z_AXIS]); motorPos[Z_AXIS] = MotorEndPointToMachine(Z_AXIS, machinePos[Z_AXIS] - machinePos[Y_AXIS]); break; default: motorPos[X_AXIS] = MotorEndPointToMachine(X_AXIS, machinePos[X_AXIS]); motorPos[Y_AXIS] = MotorEndPointToMachine(Y_AXIS, machinePos[Y_AXIS]); motorPos[Z_AXIS] = MotorEndPointToMachine(Z_AXIS, machinePos[Z_AXIS]); break; } } } // Do the Axis transform BEFORE the bed transform void Move::AxisTransform(float xyzPoint[AXES]) const { xyzPoint[X_AXIS] = xyzPoint[X_AXIS] + tanXY*xyzPoint[Y_AXIS] + tanXZ*xyzPoint[Z_AXIS]; xyzPoint[Y_AXIS] = xyzPoint[Y_AXIS] + tanYZ*xyzPoint[Z_AXIS]; } // Invert the Axis transform AFTER the bed transform void Move::InverseAxisTransform(float xyzPoint[AXES]) const { xyzPoint[Y_AXIS] = xyzPoint[Y_AXIS] - tanYZ*xyzPoint[Z_AXIS]; xyzPoint[X_AXIS] = xyzPoint[X_AXIS] - (tanXY*xyzPoint[Y_AXIS] + tanXZ*xyzPoint[Z_AXIS]); } void Move::Transform(float xyzPoint[AXES]) const { AxisTransform(xyzPoint); BedTransform(xyzPoint); } void Move::InverseTransform(float xyzPoint[AXES]) const { InverseBedTransform(xyzPoint); InverseAxisTransform(xyzPoint); } // Do the bed transform AFTER the axis transform void Move::BedTransform(float xyzPoint[AXES]) const { switch(numBedCompensationPoints) { case 0: break; case 3: xyzPoint[Z_AXIS] = xyzPoint[Z_AXIS] + aX*xyzPoint[X_AXIS] + aY*xyzPoint[Y_AXIS] + aC; break; case 4: xyzPoint[Z_AXIS] = xyzPoint[Z_AXIS] + SecondDegreeTransformZ(xyzPoint[X_AXIS], xyzPoint[Y_AXIS]); break; case 5: xyzPoint[Z_AXIS] = xyzPoint[Z_AXIS] + TriangleZ(xyzPoint[X_AXIS], xyzPoint[Y_AXIS]); break; default: reprap.GetPlatform()->Message(BOTH_ERROR_MESSAGE, "BedTransform: wrong number of sample points."); } } // Invert the bed transform BEFORE the axis transform void Move::InverseBedTransform(float xyzPoint[AXES]) const { switch(numBedCompensationPoints) { case 0: break; case 3: xyzPoint[Z_AXIS] = xyzPoint[Z_AXIS] - (aX*xyzPoint[X_AXIS] + aY*xyzPoint[Y_AXIS] + aC); break; case 4: xyzPoint[Z_AXIS] = xyzPoint[Z_AXIS] - SecondDegreeTransformZ(xyzPoint[X_AXIS], xyzPoint[Y_AXIS]); break; case 5: xyzPoint[Z_AXIS] = xyzPoint[Z_AXIS] - TriangleZ(xyzPoint[X_AXIS], xyzPoint[Y_AXIS]); break; default: reprap.GetPlatform()->Message(BOTH_ERROR_MESSAGE, "InverseBedTransform: wrong number of sample points."); } } void Move::SetIdentityTransform() { numBedCompensationPoints = 0; } float Move::AxisCompensation(int8_t axis) const { switch(axis) { case X_AXIS: return tanXY; case Y_AXIS: return tanYZ; case Z_AXIS: return tanXZ; default: reprap.GetPlatform()->Message(BOTH_ERROR_MESSAGE, "Axis compensation requested for non-existent axis.\n"); } return 0.0; } void Move::SetAxisCompensation(int8_t axis, float tangent) { switch(axis) { case X_AXIS: tanXY = tangent; break; case Y_AXIS: tanYZ = tangent; break; case Z_AXIS: tanXZ = tangent; break; default: reprap.GetPlatform()->Message(BOTH_ERROR_MESSAGE, "SetAxisCompensation: dud axis.\n"); } } void Move::BarycentricCoordinates(size_t p1, size_t p2, size_t p3, float x, float y, float& l1, float& l2, float& l3) const { float y23 = baryYBedProbePoints[p2] - baryYBedProbePoints[p3]; float x3 = x - baryXBedProbePoints[p3]; float x32 = baryXBedProbePoints[p3] - baryXBedProbePoints[p2]; float y3 = y - baryYBedProbePoints[p3]; float x13 = baryXBedProbePoints[p1] - baryXBedProbePoints[p3]; float y13 = baryYBedProbePoints[p1] - baryYBedProbePoints[p3]; float iDet = 1.0 / (y23 * x13 + x32 * y13); l1 = (y23 * x3 + x32 * y3) * iDet; l2 = (-y13 * x3 + x13 * y3) * iDet; l3 = 1.0 - l1 - l2; } /* * Interpolate on a triangular grid. The triangle corners are indexed: * * ^ [1] [2] * | * Y [4] * | * | [0] [3] * -----X----> * */ float Move::TriangleZ(float x, float y) const { for (size_t i = 0; i < 4; i++) { size_t j = (i + 1) % 4; float l1, l2, l3; BarycentricCoordinates(i, j, 4, x, y, l1, l2, l3); if (l1 > TRIANGLE_0 && l2 > TRIANGLE_0 && l3 > TRIANGLE_0) { return l1 * baryZBedProbePoints[i] + l2 * baryZBedProbePoints[j] + l3 * baryZBedProbePoints[4]; } } reprap.GetPlatform()->Message(BOTH_ERROR_MESSAGE, "Triangle interpolation: point outside all triangles!\n"); return 0.0; } // Calibrate or set the bed equation after probing. // sParam is the value of the S parameter in the G30 command that provoked this call. void Move::FinishedBedProbing(int sParam, StringRef& reply) { const int numPoints = NumberOfProbePoints(); if (sParam < 0) { // A negative sParam just prints the probe heights reply.copy("Bed probe heights:"); float sumOfSquares = 0.0; for (size_t i = 0; i < numPoints; ++i) { reply.catf(" %.3f", zBedProbePoints[i]); sumOfSquares += fsquare(zBedProbePoints[i]); } reply.catf(", RMS error: %.3f\n", sqrt(sumOfSquares/numPoints)); } else if (numPoints < sParam) { reprap.GetPlatform()->Message(BOTH_ERROR_MESSAGE, "Bed calibration error: %d factor calibration requested but only %d points provided\n", sParam, numPoints); } else { if (reprap.Debug(moduleMove)) { debugPrintf("Z probe offsets:"); float sumOfSquares = 0.0; for (size_t i = 0; i < numPoints; ++i) { debugPrintf(" %.3f", zBedProbePoints[i]); sumOfSquares += fsquare(zBedProbePoints[i]); } debugPrintf(", RMS error: %.3f\n", sqrt(sumOfSquares/numPoints)); } if (sParam == 0) { sParam = numPoints; } if (IsDeltaMode()) { DoDeltaCalibration(sParam, reply); } else { SetProbedBedEquation(sParam, reply); } // Clear out the Z heights so that we don't re-use old points. // This allows us to use different numbers of probe point on different occasions. for (size_t i = 0; i < MaxProbePoints; ++i) { probePointSet[i] &= ~zSet; } } } void Move::SetProbedBedEquation(size_t numPoints, StringRef& reply) { switch(numPoints) { case 3: /* * Transform to a plane */ { float x10 = xBedProbePoints[1] - xBedProbePoints[0]; float y10 = yBedProbePoints[1] - yBedProbePoints[0]; float z10 = zBedProbePoints[1] - zBedProbePoints[0]; float x20 = xBedProbePoints[2] - xBedProbePoints[0]; float y20 = yBedProbePoints[2] - yBedProbePoints[0]; float z20 = zBedProbePoints[2] - zBedProbePoints[0]; float a = y10 * z20 - z10 * y20; float b = z10 * x20 - x10 * z20; float c = x10 * y20 - y10 * x20; float d = -(xBedProbePoints[1] * a + yBedProbePoints[1] * b + zBedProbePoints[1] * c); aX = -a / c; aY = -b / c; aC = -d / c; } break; case 4: /* * Transform to a ruled-surface quadratic. The corner points for interpolation are indexed: * * ^ [1] [2] * | * Y * | * | [0] [3] * -----X----> * * These are the scaling factors to apply to x and y coordinates to get them into the * unit interval [0, 1]. */ xRectangle = 1.0 / (xBedProbePoints[3] - xBedProbePoints[0]); yRectangle = 1.0 / (yBedProbePoints[1] - yBedProbePoints[0]); break; case 5: for (size_t i = 0; i < 4; i++) { float x10 = xBedProbePoints[i] - xBedProbePoints[4]; float y10 = yBedProbePoints[i] - yBedProbePoints[4]; float z10 = zBedProbePoints[i] - zBedProbePoints[4]; baryXBedProbePoints[i] = xBedProbePoints[4] + 2.0 * x10; baryYBedProbePoints[i] = yBedProbePoints[4] + 2.0 * y10; baryZBedProbePoints[i] = zBedProbePoints[4] + 2.0 * z10; } baryXBedProbePoints[4] = xBedProbePoints[4]; baryYBedProbePoints[4] = yBedProbePoints[4]; baryZBedProbePoints[4] = zBedProbePoints[4]; break; default: reprap.GetPlatform()->Message(BOTH_ERROR_MESSAGE, "Bed calibration error: %d points provided but only 3, 4 and 5 supported\n", numPoints); return; } numBedCompensationPoints = numPoints; reply.copy("Bed equation fits points"); for (size_t point = 0; point < numPoints; point++) { reply.catf(" [%.1f, %.1f, %.3f]", xBedProbePoints[point], yBedProbePoints[point], zBedProbePoints[point]); } reply.cat("\n"); } // Perform 4- or 7-factor delta adjustment void Move::AdjustDeltaParameters(const float v[], size_t numFactors) { // Save the old home carriage heights float homedCarriageHeights[AXES]; for (size_t drive = 0; drive < AXES; ++drive) { homedCarriageHeights[drive] = deltaParams.GetHomedCarriageHeight(drive); } deltaParams.Adjust(numFactors, v); // adjust the delta parameters // Adjust the motor endpoints to allow for the change in endstop adjustments DDA *lastQueuedMove = ddaRingAddPointer->GetPrevious(); const int32_t *endCoordinates = lastQueuedMove->DriveCoordinates(); const float *driveStepsPerUnit = reprap.GetPlatform()->GetDriveStepsPerUnit(); for (size_t drive = 0; drive < AXES; ++drive) { const float heightAdjust = deltaParams.GetHomedCarriageHeight(drive) - homedCarriageHeights[drive]; int32_t ep = endCoordinates[drive] + (int32_t)(heightAdjust * driveStepsPerUnit[drive]); lastQueuedMove->SetDriveCoordinate(ep, drive); liveEndPoints[drive] = ep; } liveCoordinatesValid = false; // force the live XYZ position to be recalculated } // Do delta calibration. We adjust the three endstop corrections, and either the delta radius, // or the X positions of the front two towers, the Y position of the rear tower, and the diagonal rod length. void Move::DoDeltaCalibration(size_t numFactors, StringRef& reply) { const size_t NumDeltaFactors = 7; // number of delta machine factors we can adjust const size_t numPoints = NumberOfProbePoints(); if (numFactors != 3 && numFactors != 4 && numFactors != 6 && numFactors != 7) { reprap.GetPlatform()->Message(BOTH_ERROR_MESSAGE, "Delta calibration error: %d factors requested but only 3, 4, 6 and 7 supported\n", numFactors); return; } if (numFactors == 4 && !deltaParams.IsEquilateral()) { reprap.GetPlatform()->Message(BOTH_ERROR_MESSAGE, "Delta calibration error: 4 factor calibration not possible because tower positions have been adjusted\n"); return; } if (reprap.Debug(moduleMove)) { deltaParams.PrintParameters(scratchString, true); debugPrintf("%s\n", scratchString.Pointer()); } // The following is for printing out the calculation time, see later //uint32_t startTime = reprap.GetPlatform()->GetInterruptClocks(); // Transform the probing points to motor endpoints and store them in a matrix, so that we can do multiple iterations using the same data FixedMatrix probeMotorPositions; float corrections[MaxDeltaCalibrationPoints]; for (size_t i = 0; i < numPoints; ++i) { corrections[i] = 0.0; float machinePos[AXES]; float xp = xBedProbePoints[i], yp = yBedProbePoints[i]; if (probePointSet[i] & xyCorrected) { // The point was probed with the sensor at the specified XY coordinates, so subtract the sensor offset to get the head position const ZProbeParameters& zparams = reprap.GetPlatform()->GetZProbeParameters(); xp -= zparams.xOffset; yp -= zparams.yOffset; } machinePos[X_AXIS] = xp; machinePos[Y_AXIS] = yp; machinePos[Z_AXIS] = 0.0; probeMotorPositions(i, A_AXIS) = deltaParams.Transform(machinePos, A_AXIS); probeMotorPositions(i, B_AXIS) = deltaParams.Transform(machinePos, B_AXIS); probeMotorPositions(i, C_AXIS) = deltaParams.Transform(machinePos, C_AXIS); } // Do 1 or more Newton-Raphson iterations unsigned int iteration = 0; for (;;) { // Build a Nx7 matrix of derivatives with respect to xa, xb, yc, za, zb, zc, diagonal. FixedMatrix derivativeMatrix; for (size_t i = 0; i < numPoints; ++i) { for (size_t j = 0; j < numFactors; ++j) { derivativeMatrix(i, j) = deltaParams.ComputeDerivative((numFactors == 4 && j == 3) ? 7 : j, probeMotorPositions(i, A_AXIS), probeMotorPositions(i, B_AXIS), probeMotorPositions(i, C_AXIS)); } } if (reprap.Debug(moduleMove)) { PrintMatrix("Derivative matrix", derivativeMatrix, numPoints, numFactors); } // Now build the normal equations for least squares fitting FixedMatrix normalMatrix; for (size_t i = 0; i < numFactors; ++i) { for (size_t j = 0; j < numFactors; ++j) { float temp = derivativeMatrix(0, i) * derivativeMatrix(0, j); for (size_t k = 1; k < numPoints; ++k) { temp += derivativeMatrix(k, i) * derivativeMatrix(k, j); } normalMatrix(i, j) = temp; } float temp = derivativeMatrix(0, i) * -(zBedProbePoints[0] + corrections[0]); for (size_t k = 1; k < numPoints; ++k) { temp += derivativeMatrix(k, i) * -(zBedProbePoints[k] + corrections[k]); } normalMatrix(i, numFactors) = temp; } if (reprap.Debug(moduleMove)) { PrintMatrix("Normal matrix", normalMatrix, numFactors, numFactors + 1); } float solution[NumDeltaFactors]; normalMatrix.GaussJordan(solution, numFactors); if (reprap.Debug(moduleMove)) { PrintMatrix("Solved matrix", normalMatrix, numFactors, numFactors + 1); PrintVector("Solution", solution, numFactors); // Calculate and display the residuals float residuals[MaxDeltaCalibrationPoints]; for (size_t i = 0; i < numPoints; ++i) { residuals[i] = zBedProbePoints[i]; for (size_t j = 0; j < numFactors; ++j) { residuals[i] += solution[j] * derivativeMatrix(i, j); } } PrintVector("Residuals", residuals, numPoints); } AdjustDeltaParameters(solution, numFactors); // Calculate the expected probe heights using the new parameters { float expectedResiduals[MaxDeltaCalibrationPoints]; float sumOfSquares = 0.0; for (size_t i = 0; i < numPoints; ++i) { for (size_t axis = 0; axis < AXES; ++axis) { probeMotorPositions(i, axis) += solution[axis]; } float newPosition[AXES]; deltaParams.InverseTransform(probeMotorPositions(i, A_AXIS), probeMotorPositions(i, B_AXIS), probeMotorPositions(i, C_AXIS), newPosition); corrections[i] = newPosition[Z_AXIS]; expectedResiduals[i] = zBedProbePoints[i] + newPosition[Z_AXIS]; sumOfSquares += fsquare(expectedResiduals[i]); } if (reprap.Debug(moduleMove)) { PrintVector("Expected probe error", expectedResiduals, numPoints); debugPrintf("Expected RMS error %.3f\n", sqrt(sumOfSquares/numPoints)); } } // Decide whether to do another iteration Two is slightly better than one, but three doesn't improve things. // Alteratively, we could stop when the expected RMS error is only slightly worse than the RMS of the residuals. ++iteration; if (iteration == 2) break; } // Print out the calculation time //debugPrintf("Time taken %dms\n", (reprap.GetPlatform()->GetInterruptClocks() - startTime) * 1000 / DDA::stepClockRate); deltaParams.PrintParameters(reply, true); } /* * Transform to a ruled-surface quadratic. The corner points for interpolation are indexed: * * ^ [1] [2] * | * Y * | * | [0] [3] * -----X----> * * The values of x and y are transformed to put them in the interval [0, 1]. */ float Move::SecondDegreeTransformZ(float x, float y) const { x = (x - xBedProbePoints[0])*xRectangle; y = (y - yBedProbePoints[0])*yRectangle; return (1.0 - x)*(1.0 - y)*zBedProbePoints[0] + x*(1.0 - y)*zBedProbePoints[3] + (1.0 - x)*y*zBedProbePoints[1] + x*y*zBedProbePoints[2]; } // This is the function that's called by the timer interrupt to step the motors. void Move::Interrupt() { bool again = true; while (again && currentDda != nullptr) { again = currentDda->Step(); } } // This is called from the step ISR when the current move has been completed void Move::CurrentMoveCompleted() { // Save the current motor coordinates, and the machine Cartesian coordinates if known liveCoordinatesValid = currentDda->FetchEndPosition(const_cast(liveEndPoints), const_cast(liveCoordinates)); currentDda->Release(); currentDda = nullptr; ddaRingGetPointer = ddaRingGetPointer->GetNext(); } // Start the next move. Must be called with interrupts disabled, to avoid a race condition. bool Move::StartNextMove(uint32_t startTime) { if (ddaRingGetPointer->GetState() == DDA::frozen) { currentDda = ddaRingGetPointer; return currentDda->Start(startTime); } else { return false; } } // This is called from the step ISR. Any variables it modifies that are also read by code outside the ISR must be declared 'volatile'. void Move::HitLowStop(size_t drive, DDA* hitDDA) { if (drive < AXES && !IsDeltaMode()) // should always be true { float hitPoint; if (drive == Z_AXIS) { // Special case of doing a G1 S1 Z move on a Cartesian printer. This is not how we normally home the Z axis, we use G30 instead. // But I think it used to work, so let's not break it. hitPoint = reprap.GetPlatform()->ZProbeStopHeight(); } else { hitPoint = reprap.GetPlatform()->AxisMinimum(drive); } int32_t coord = MotorEndPointToMachine(drive, hitPoint); hitDDA->SetDriveCoordinate(coord, drive); reprap.GetGCodes()->SetAxisIsHomed(drive); } } // This is called from the step ISR. Any variables it modifies that are also read by code outside the ISR must be declared 'volatile'. void Move::HitHighStop(size_t drive, DDA* hitDDA) { if (drive < AXES) // should always be true { float position = (IsDeltaMode()) ? deltaParams.GetHomedCarriageHeight(drive) // this is a delta printer, so the motor is at the homed carriage height for this drive : reprap.GetPlatform()->AxisMaximum(drive); // this is a Cartesian printer, so we're at the maximum for this axis hitDDA->SetDriveCoordinate(MotorEndPointToMachine(drive, position), drive); reprap.GetGCodes()->SetAxisIsHomed(drive); } } // This is called from the step ISR. Any variables it modifies that are also read by code outside the ISR must be declared 'volatile'. // The move has already been aborted when this is called, so the endpoints in the DDA are the current motor positions. void Move::ZProbeTriggered(DDA* hitDDA) { // Currently, we don't need to do anything here } // Return the untransformed machine coordinates void Move::GetCurrentMachinePosition(float m[DRIVES + 1], bool disableMotorMapping) const { DDA *lastQueuedMove = ddaRingAddPointer->GetPrevious(); for (size_t i = 0; i < DRIVES; i++) { if (i < AXES) { m[i] = lastQueuedMove->GetEndCoordinate(i, disableMotorMapping); } else { m[i] = 0.0; } } m[DRIVES] = currentFeedrate; } /*static*/ float Move::MotorEndpointToPosition(int32_t endpoint, size_t drive) { return ((float)(endpoint))/reprap.GetPlatform()->DriveStepsPerUnit(drive); } // Return the transformed machine coordinates void Move::GetCurrentUserPosition(float m[DRIVES + 1], uint8_t moveType) const { GetCurrentMachinePosition(m, moveType == 2 || (moveType == 1 && IsDeltaMode())); if (moveType == 0) { InverseTransform(m); } } // Return the current live XYZ and extruder coordinates // Interrupts are assumed enabled on entry, so do not call this from an ISR void Move::LiveCoordinates(float m[DRIVES]) { // The live coordinates and live endpoints are modified by the ISR, to be careful to get a self-consistent set of them cpu_irq_disable(); if (liveCoordinatesValid) { // All coordinates are valid, so copy them across memcpy(m, const_cast(liveCoordinates), sizeof(m[0]) * DRIVES); cpu_irq_enable(); } else { // Only the extruder coordinates are valid, so we need to convert the motor endpoints to coordinates memcpy(m + AXES, const_cast(liveCoordinates + AXES), sizeof(m[0]) * (DRIVES - AXES)); int32_t tempEndPoints[AXES]; memcpy(tempEndPoints, const_cast(liveEndPoints), sizeof(tempEndPoints)); cpu_irq_enable(); MachineToEndPoint(tempEndPoints, m, AXES); // this is slow, so do it with interrupts enabled // If the ISR has not updated the endpoints, store the live coordinates back so that we don't need to do it again cpu_irq_disable(); if (memcmp(tempEndPoints, const_cast(liveEndPoints), sizeof(tempEndPoints)) == 0) { memcpy(const_cast(liveCoordinates), m, sizeof(m[0]) * AXES); liveCoordinatesValid = true; } cpu_irq_enable(); } InverseTransform(m); } // These are the actual numbers that we want to be the coordinates, so don't transform them. // Interrupts are assumed enabled on entry, so do not call this from an ISR void Move::SetLiveCoordinates(const float coords[DRIVES]) { cpu_irq_disable(); for(size_t drive = 0; drive < DRIVES; drive++) { liveCoordinates[drive] = coords[drive]; } liveCoordinatesValid = true; EndPointToMachine(coords, const_cast(liveEndPoints), AXES); cpu_irq_enable(); } void Move::SetXBedProbePoint(int index, float x) { if(index < 0 || index >= MaxProbePoints) { reprap.GetPlatform()->Message(BOTH_MESSAGE, "Z probe point X index out of range.\n"); return; } xBedProbePoints[index] = x; probePointSet[index] |= xSet; } void Move::SetYBedProbePoint(int index, float y) { if(index < 0 || index >= MaxProbePoints) { reprap.GetPlatform()->Message(BOTH_MESSAGE, "Z probe point Y index out of range.\n"); return; } yBedProbePoints[index] = y; probePointSet[index] |= ySet; } void Move::SetZBedProbePoint(int index, float z, bool wasXyCorrected) { if(index < 0 || index >= MaxProbePoints) { reprap.GetPlatform()->Message(BOTH_MESSAGE, "Z probe point Z index out of range.\n"); return; } zBedProbePoints[index] = z; probePointSet[index] |= zSet; if (wasXyCorrected) { probePointSet[index] |= xyCorrected; } else { probePointSet[index] &= ~xyCorrected; } } float Move::XBedProbePoint(int index) const { return xBedProbePoints[index]; } float Move::YBedProbePoint(int index) const { return yBedProbePoints[index]; } float Move::ZBedProbePoint(int index) const { return zBedProbePoints[index]; } bool Move::AllProbeCoordinatesSet(int index) const { return (probePointSet[index] & (xSet | ySet | zSet)) == (xSet | ySet | zSet); } bool Move::XYProbeCoordinatesSet(int index) const { return (probePointSet[index] & xSet) && (probePointSet[index] & ySet); } int Move::NumberOfProbePoints() const { for(int i = 0; i < MaxProbePoints; i++) { if(!AllProbeCoordinatesSet(i)) { return i; } } return MaxProbePoints; } int Move::NumberOfXYProbePoints() const { for(int i = 0; i < MaxProbePoints; i++) { if(!XYProbeCoordinatesSet(i)) { return i; } } return MaxProbePoints; } // Enter or leave simulation mode void Move::Simulate(bool sim) { simulating = sim; if (sim) { simulationTime = 0.0; } } // For debugging void Move::PrintCurrentDda() const { if (currentDda != nullptr) { currentDda->DebugPrint(); reprap.GetPlatform()->GetLine()->Flush(); } } const char* Move::GetGeometryString() const { return (IsDeltaMode()) ? "delta" : (coreXYMode == 1) ? "coreXY" : (coreXYMode == 2) ? "coreXZ" : (coreXYMode == 3) ? "coreYZ" : "cartesian"; } /*static*/ void Move::PrintMatrix(const char* s, const MathMatrix& m, size_t maxRows, size_t maxCols) { debugPrintf("%s\n", s); if (maxRows == 0) { maxRows = m.rows(); } if (maxCols == 0) { maxCols = m.cols(); } for (size_t i = 0; i < maxRows; ++i) { for (size_t j = 0; j < maxCols; ++j) { debugPrintf("%7.3f%c", m(i, j), (j == maxCols - 1) ? '\n' : ' '); } } } /*static*/ void Move::PrintVector(const char *s, const float *v, size_t numElems) { debugPrintf("%s:", s); for (size_t i = 0; i < numElems; ++i) { debugPrintf(" %7.3f", v[i]); } debugPrintf("\n"); } // End