/* * DriveMovement.h * * Created on: 17 Jan 2015 * Author: David */ #ifndef DRIVEMOVEMENT_H_ #define DRIVEMOVEMENT_H_ // Set the following nonzero to cache the square of startSpeedTimesCdivA, at the cost of 64 bytes of memory per DDA #define CACHE_startSpeedTimesCdivAsquared 0 class DDA; // Struct for passing parameters to the DriveMovement Prepare methods struct PrepParams { float decelStartDistance; uint32_t startSpeedTimesCdivA; uint32_t topSpeedTimesCdivA; uint32_t decelStartClocks; uint32_t topSpeedTimesCdivAPlusDecelStartClocks; uint32_t accelClocksMinusAccelDistanceTimesCdivTopSpeed; float compFactor; }; // This class describes a single movement of one drive class DriveMovement { public: uint32_t CalcNextStepTimeCartesian(size_t drive); uint32_t CalcNextStepTimeDelta(const DDA &dda, size_t drive); void PrepareCartesianAxis(const DDA& dda, const PrepParams& params, size_t drive); void PrepareDeltaAxis(const DDA& dda, const PrepParams& params, size_t drive); void PrepareExtruder(const DDA& dda, const PrepParams& params, size_t drive); void ReduceSpeed(const DDA& dda, float inverseSpeedFactor); void DebugPrint(char c, bool withDelta) const; static uint32_t isqrt(uint64_t num); // Parameters common to Cartesian, delta and extruder moves // These values don't depend on how the move is executed, so are set by Init() uint32_t totalSteps; // total number of steps for this move bool moving; // true if this drive moves in this move, if false then all other values are don't cares bool direction; // true=forwards, false=backwards bool stepError; // for debugging // The following only need to be stored per-drive if we are supporting elasticity compensation uint32_t startSpeedTimesCdivA; #if CACHE_startSpeedTimesCdivAsquared uint64_t startSpeedTimesCdivAsquared; #endif int32_t accelClocksMinusAccelDistanceTimesCdivTopSpeed; // this one can be negative uint32_t topSpeedTimesCdivAPlusDecelStartClocks; uint64_t twoDistanceToStopTimesCsquaredDivA; // Parameters unique to a style of move (Cartesian, delta or extruder). Currently, extruders and Cartesian moves use the same parameters. union MoveParams { struct CartesianParameters // Parameters for Cartesian and extruder movement, including extruder pre-compensation { // The following don't depend on how the move is executed, so they could be set up in Init() uint64_t twoCsquaredTimesMmPerStepDivA; // 2 * clock^2 * mmPerStepInHyperCuboidSpace / acceleration // The following depend on how the move is executed, so they must be set up in Prepare() uint32_t accelStopStep; // the first step number at which we are no longer accelerating uint32_t decelStartStep; // the first step number at which we are decelerating uint32_t reverseStartStep; // the first step number for which we need to reverse direction to to elastic compensation uint32_t mmPerStepTimesCdivtopSpeed; // mmPerStepInHyperCuboidSpace * clock / topSpeed // The following only need to be stored per-drive if we are supporting elasticity compensation int64_t fourMaxStepDistanceMinusTwoDistanceToStopTimesCsquaredDivA; // this one can be negative } cart; struct DeltaParameters // Parameters for delta movement { // The following don't depend on how the move is executed, so they can be set up in Init uint32_t reverseStartStep; int32_t hmz0sK; // the starting step position less the starting Z height, multiplied by the Z movement fraction and K (can go negative) int32_t minusAaPlusBbTimesKs; int64_t dSquaredMinusAsquaredMinusBsquaredTimesKsquaredSsquared; uint32_t twoCsquaredTimesMmPerStepDivAK; // this could be stored in the DDA if all towers use the same steps/mm // The following depend on how the move is executed, so they must be set up in Prepare() uint32_t accelStopDsK; uint32_t decelStartDsK; uint32_t mmPerStepTimesCdivtopSpeedK; } delta; } mp; // These values change as the step is executed uint32_t nextStep; // number of steps already done uint32_t nextStepTime; // how many clocks after the start of this move the next step is due static const uint32_t NoStepTime = 0xFFFFFFFF; // value to indicate that no further steps are needed when calculating the next step time static const uint32_t K1 = 1024; // a power of 2 used to multiply the value mmPerStepTimesCdivtopSpeed to reduce rounding errors static const uint32_t K2 = 512; // a power of 2 used in delta calculations to reduce rounding errors (but too large makes things worse) static const int32_t Kc = 4096; // a power of 2 for scaling the Z movement fraction }; #endif /* DRIVEMOVEMENT_H_ */