/* * DeltaParameters.cpp * * Created on: 20 Apr 2015 * Author: David */ #include "RepRapFirmware.h" void DeltaParameters::Init() { deltaMode = false; diagonal = 0.0; radius = 0.0; printRadius = defaultPrintRadius; homedHeight = defaultDeltaHomedHeight; isEquilateral = true; for (size_t axis = 0; axis < AXES; ++axis) { endstopAdjustments[axis] = 0.0; towerX[axis] = towerY[axis] = 0.0; } } void DeltaParameters::SetRadius(float r) { radius = r; isEquilateral = true; const float cos30 = sqrtf(3.0)/2.0; const float sin30 = 0.5; towerX[A_AXIS] = -(r * cos30); towerX[B_AXIS] = r * cos30; towerX[C_AXIS] = 0.0; towerY[A_AXIS] = towerY[B_AXIS] = -(r * sin30); towerY[C_AXIS] = r; Recalc(); } void DeltaParameters::Recalc() { deltaMode = (radius > 0.0 && diagonal > radius); if (deltaMode) { Xbc = towerX[C_AXIS] - towerX[B_AXIS]; Xca = towerX[A_AXIS] - towerX[C_AXIS]; Xab = towerX[B_AXIS] - towerX[A_AXIS]; Ybc = towerY[C_AXIS] - towerY[B_AXIS]; Yca = towerY[A_AXIS] - towerY[C_AXIS]; Yab = towerY[B_AXIS] - towerY[A_AXIS]; coreFa = fsquare(towerX[A_AXIS]) + fsquare(towerY[A_AXIS]); coreFb = fsquare(towerX[B_AXIS]) + fsquare(towerY[B_AXIS]); coreFc = fsquare(towerX[C_AXIS]) + fsquare(towerY[C_AXIS]); Q = 2 * (Xca * Yab - Xab * Yca); Q2 = fsquare(Q); D2 = fsquare(diagonal); // Calculate the base carriage height when the printer is homed. const float tempHeight = diagonal; // any sensible height will do here, probably even zero float machinePos[AXES]; InverseTransform(tempHeight + endstopAdjustments[X_AXIS], tempHeight + endstopAdjustments[Y_AXIS], tempHeight + endstopAdjustments[X_AXIS], machinePos); homedCarriageHeight = homedHeight + tempHeight - machinePos[Z_AXIS]; } } // Make the average of the endstop adjustments zero, without changing the individual homed carriage heights void DeltaParameters::NormaliseEndstopAdjustments() { const float eav = (endstopAdjustments[A_AXIS] + endstopAdjustments[B_AXIS] + endstopAdjustments[C_AXIS])/3.0; endstopAdjustments[A_AXIS] -= eav; endstopAdjustments[B_AXIS] -= eav; endstopAdjustments[C_AXIS] -= eav; homedHeight += eav; homedCarriageHeight += eav; // no need for a full recalc, this is sufficient } // Calculate the motor position for a single tower from a Cartesian coordinate float DeltaParameters::Transform(const float machinePos[AXES], size_t axis) const { return machinePos[Z_AXIS] + sqrt(D2 - fsquare(machinePos[X_AXIS] - towerX[axis]) - fsquare(machinePos[Y_AXIS] - towerY[axis])); } void DeltaParameters::InverseTransform(float Ha, float Hb, float Hc, float machinePos[AXES]) const { const float Fa = coreFa + fsquare(Ha); const float Fb = coreFb + fsquare(Hb); const float Fc = coreFc + fsquare(Hc); // debugPrintf("Ha=%f Hb=%f Hc=%f Fa=%f Fb=%f Fc=%f Xbc=%f Xca=%f Xab=%f Ybc=%f Yca=%f Yab=%f\n", // Ha, Hb, Hc, Fa, Fb, Fc, Xbc, Xca, Xab, Ybc, Yca, Yab); // Setup PQRSU such that x = -(S - uz)/P, y = (P - Rz)/Q const float P = (Xbc * Fa) + (Xca * Fb) + (Xab * Fc); const float S = (Ybc * Fa) + (Yca * Fb) + (Yab * Fc); const float R = 2 * ((Xbc * Ha) + (Xca * Hb) + (Xab * Hc)); const float U = 2 * ((Ybc * Ha) + (Yca * Hb) + (Yab * Hc)); // debugPrintf("P= %f R=%f S=%f U=%f Q=%f\n", P, R, S, U, Q); const float R2 = fsquare(R), U2 = fsquare(U); float A = U2 + R2 + Q2; float minusHalfB = S * U + P * R + Ha * Q2 + towerX[A_AXIS] * U * Q - towerY[A_AXIS] * R * Q; float C = fsquare(S + towerX[A_AXIS] * Q) + fsquare(P - towerY[A_AXIS] * Q) + (fsquare(Ha) - D2) * Q2; // debugPrintf("A=%f minusHalfB=%f C=%f\n", A, minusHalfB, C); float z = (minusHalfB - sqrtf(fsquare(minusHalfB) - A * C)) / A; machinePos[X_AXIS] = (U * z - S) / Q; machinePos[Y_AXIS] = (P - R * z) / Q; machinePos[Z_AXIS] = z; } // Compute the derivative of height with respect to a parameter at the specified motor endpoints. // 'deriv' indicates the parameter as follows: // 0, 1, 2 = X, Y, Z tower endstop adjustments // 3, 4 = X, Y tower X position // 5 = Z tower Y position // 6 = diagonal rod length // 7 = delta radius (only if isEquilateral is true) float DeltaParameters::ComputeDerivative(unsigned int deriv, float ha, float hb, float hc) { const float perturb = 0.2; // perturbation amount in mm DeltaParameters hiParams(*this), loParams(*this); switch(deriv) { case 0: case 1: case 2: break; case 3: case 4: hiParams.towerX[deriv - 3] += perturb; loParams.towerX[deriv - 3] -= perturb; break; case 5: { const float yAdj = perturb * (1.0/3.0); hiParams.towerY[A_AXIS] -= yAdj; hiParams.towerY[B_AXIS] -= yAdj; hiParams.towerY[C_AXIS] += (perturb - yAdj); loParams.towerY[A_AXIS] += yAdj; loParams.towerY[B_AXIS] += yAdj; loParams.towerY[C_AXIS] -= (perturb - yAdj); } break; case 6: hiParams.diagonal += perturb; loParams.diagonal -= perturb; break; case 7: hiParams.SetRadius(radius + perturb); loParams.SetRadius(radius - perturb); break; } hiParams.Recalc(); loParams.Recalc(); float newPos[AXES]; hiParams.InverseTransform((deriv == 0) ? ha + perturb : ha, (deriv == 1) ? hb + perturb : hb, (deriv == 2) ? hc + perturb : hc, newPos); float zHi = newPos[Z_AXIS]; loParams.InverseTransform((deriv == 0) ? ha - perturb : ha, (deriv == 1) ? hb - perturb : hb, (deriv == 2) ? hc - perturb : hc, newPos); float zLo = newPos[Z_AXIS]; return (zHi - zLo)/(2 * perturb); } // Perform 3, 4, 6 or 7-factor adjustment. // The input vector contains the following parameters in this order: // X, Y and Z endstop adjustments // If we are doing 4-factor adjustment, the next argument is the delta radius. Otherwise: // X tower X position adjustment // Y tower X position adjustment // Z tower Y position adjustment // Diagonal rod length adjustment void DeltaParameters::Adjust(size_t numFactors, const float v[]) { const float oldCarriageHeightA = GetHomedCarriageHeight(A_AXIS); // save for later // Update endstop adjustments endstopAdjustments[A_AXIS] += v[0]; endstopAdjustments[B_AXIS] += v[1]; endstopAdjustments[C_AXIS] += v[2]; NormaliseEndstopAdjustments(); if (numFactors == 4) { // 4-factor adjustment, so update delta radius SetRadius(radius + v[3]); // this sets isEquilateral true, recalculates tower positions, then calls Recalc() } else if (numFactors > 3) { // 6- or 7-factor adjustment towerX[A_AXIS] += v[3]; towerX[B_AXIS] += v[4]; const float yAdj = v[5] * (1.0/3.0); towerY[A_AXIS] -= yAdj; towerY[B_AXIS] -= yAdj; towerY[C_AXIS] += (v[5] - yAdj); isEquilateral = false; if (numFactors == 7) { diagonal += v[6]; } Recalc(); } // Adjusting the diagonal and the tower positions affects the homed carriage height. // We need to adjust homedHeight to allow for this, to get the change that was requested in the endstop corrections. const float heightError = GetHomedCarriageHeight(A_AXIS) - oldCarriageHeightA - v[0]; homedHeight -= heightError; homedCarriageHeight -= heightError; } void DeltaParameters::PrintParameters(StringRef& reply, bool full) { reply.printf("Endstops X%.2f Y%.2f Z%.2f, height %.2f, diagonal %.2f, ", endstopAdjustments[A_AXIS], endstopAdjustments[B_AXIS], endstopAdjustments[C_AXIS], homedHeight, diagonal); if (isEquilateral && !full) { reply.catf("radius %.2f\n", radius); } else { reply.catf("towers (%.2f,%.2f) (%.2f,%.2f) (%.2f,%.2f)\n", towerX[A_AXIS], towerY[A_AXIS], towerX[B_AXIS], towerY[B_AXIS], towerX[C_AXIS], towerY[C_AXIS]); } } // End