
* mentioned code contributors in the docu (even the "passive" ones as openbsd etc) --HG-- extra : convert_revision : svn%3Aeebe1cee-a9af-4fe4-bd26-ad572b19c5ab/trunk%4064
1164 lines
37 KiB
C
1164 lines
37 KiB
C
/* ---------------------------------------------------------------- *\
|
|
|
|
file : auth_sha2.c
|
|
author : m. gumz <akira at fluxbox dot org>
|
|
copyr : copyright (c) 2005 - 2007 by m. gumz
|
|
|
|
license : based on: openbsd sha2.c/h
|
|
|
|
SHA-2 in C
|
|
Aaron D. Gifford <me@aarongifford.com>
|
|
100% Public Domain
|
|
|
|
start : So 08 Mai 2005 13:21:45 CEST
|
|
|
|
\* ---------------------------------------------------------------- */
|
|
/* ---------------------------------------------------------------- *\
|
|
|
|
about :
|
|
|
|
provide -auth sha256:hash=<hash>,file=<filename>
|
|
provide -auth sha384:hash=<hash>,file=<filename>
|
|
provide -auth sha512:hash=<hash>,file=<filename>
|
|
|
|
\* ---------------------------------------------------------------- */
|
|
|
|
/* ---------------------------------------------------------------- *\
|
|
includes
|
|
\* ---------------------------------------------------------------- */
|
|
|
|
#ifndef STAND_ALONE
|
|
# include <X11/Xlib.h>
|
|
# include "alock.h"
|
|
#endif /* STAND_ALONE */
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/cdefs.h>
|
|
#include <sys/param.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <ctype.h>
|
|
/*------------------------------------------------------------------*\
|
|
\*------------------------------------------------------------------*/
|
|
|
|
enum {
|
|
SHA256_BLOCK_LENGTH = 64,
|
|
SHA256_SHORT_BLOCK_LENGTH = (SHA256_BLOCK_LENGTH - 8),
|
|
SHA256_DIGEST_LENGTH = 32,
|
|
SHA256_DIGEST_STRING_LENGTH = (SHA256_DIGEST_LENGTH * 2 + 1),
|
|
|
|
SHA384_BLOCK_LENGTH = 128,
|
|
SHA384_SHORT_BLOCK_LENGTH = (SHA384_BLOCK_LENGTH - 16),
|
|
SHA384_DIGEST_LENGTH = 48,
|
|
SHA384_DIGEST_STRING_LENGTH = (SHA384_DIGEST_LENGTH * 2 + 1),
|
|
|
|
SHA512_BLOCK_LENGTH = 128,
|
|
SHA512_SHORT_BLOCK_LENGTH = (SHA512_BLOCK_LENGTH - 16),
|
|
SHA512_DIGEST_LENGTH = 64,
|
|
SHA512_DIGEST_STRING_LENGTH = (SHA512_DIGEST_LENGTH * 2 + 1)
|
|
};
|
|
|
|
typedef struct _sha256Context {
|
|
u_int32_t state[8];
|
|
u_int64_t bitcount;
|
|
u_int8_t buffer[SHA256_BLOCK_LENGTH];
|
|
} sha256Context;
|
|
|
|
typedef struct _sha512Context {
|
|
u_int64_t state[8];
|
|
u_int64_t bitcount[2];
|
|
u_int8_t buffer[SHA512_BLOCK_LENGTH];
|
|
} sha512Context;
|
|
|
|
typedef sha512Context sha384Context;
|
|
|
|
static void sha256_init(sha256Context *);
|
|
static void sha256_update(sha256Context *, const u_int8_t *, size_t);
|
|
static void sha256_final(u_int8_t[SHA256_DIGEST_LENGTH], sha256Context *);
|
|
static void sha256_transform(sha256Context *, const u_int8_t *);
|
|
|
|
static void sha384_init(sha384Context *);
|
|
static void sha384_update(sha384Context *, const u_int8_t *, size_t);
|
|
static void sha384_final(u_int8_t[SHA384_DIGEST_LENGTH], sha384Context *);
|
|
|
|
static void sha512_init(sha512Context *);
|
|
static void sha512_update(sha512Context *, const u_int8_t *, size_t);
|
|
static void sha512_final(u_int8_t[SHA512_DIGEST_LENGTH], sha512Context *);
|
|
static void sha512_last(sha512Context *);
|
|
static void sha512_transform(sha512Context *, const u_int8_t *);
|
|
|
|
/*** ENDIAN REVERSAL MACROS *******************************************/
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
#define REVERSE32(w,x) { \
|
|
u_int32_t tmp = (w); \
|
|
tmp = (tmp >> 16) | (tmp << 16); \
|
|
(x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
|
|
}
|
|
#define REVERSE64(w,x) { \
|
|
u_int64_t tmp = (w); \
|
|
tmp = (tmp >> 32) | (tmp << 32); \
|
|
tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
|
|
((tmp & 0x00ff00ff00ff00ffULL) << 8); \
|
|
(x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
|
|
((tmp & 0x0000ffff0000ffffULL) << 16); \
|
|
}
|
|
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
|
|
|
|
|
|
/*------------------------------------------------------------------*\
|
|
Macro for incrementally adding the unsigned 64-bit integer n to the
|
|
unsigned 128-bit integer (represented using a two-element array of
|
|
64-bit words):
|
|
\*------------------------------------------------------------------*/
|
|
#define ADDINC128(w,n) { \
|
|
(w)[0] += (u_int64_t)(n); \
|
|
if ((w)[0] < (n)) { \
|
|
(w)[1]++; \
|
|
} \
|
|
}
|
|
|
|
/*------------------------------------------------------------------*\
|
|
THE SIX LOGICAL FUNCTIONS
|
|
|
|
Bit shifting and rotation (used by the six SHA-XYZ logical functions:
|
|
|
|
NOTE: The naming of R and S appears backwards here (R is a SHIFT and
|
|
S is a ROTATION) because the SHA-256/384/512 description document
|
|
(see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
|
|
same "backwards" definition.
|
|
\*------------------------------------------------------------------*/
|
|
|
|
/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
|
|
#define R(b,x) ((x) >> (b))
|
|
/* 32-bit Rotate-right (used in SHA-256): */
|
|
#define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
|
|
/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
|
|
#define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
|
|
|
|
/* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
|
|
#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
|
|
#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
|
|
|
|
/* Four of six logical functions used in SHA-256: */
|
|
#define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
|
|
#define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
|
|
#define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
|
|
#define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
|
|
|
|
/* Four of six logical functions used in SHA-384 and SHA-512: */
|
|
#define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
|
|
#define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
|
|
#define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
|
|
#define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
|
|
|
|
|
|
/*------------------------------------------------------------------*\
|
|
SHA-XYZ INITIAL HASH VALUES AND CONSTANTS
|
|
\*------------------------------------------------------------------*/
|
|
static const u_int32_t K256[64] = {
|
|
0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
|
|
0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
|
|
0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
|
|
0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
|
|
0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
|
|
0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
|
|
0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
|
|
0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
|
|
0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
|
|
0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
|
|
0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
|
|
0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
|
|
0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
|
|
0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
|
|
0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
|
|
0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
|
|
};
|
|
|
|
/* Initial hash value H for SHA-256: */
|
|
static const u_int32_t sha256_initial_hash_value[8] = {
|
|
0x6a09e667UL,
|
|
0xbb67ae85UL,
|
|
0x3c6ef372UL,
|
|
0xa54ff53aUL,
|
|
0x510e527fUL,
|
|
0x9b05688cUL,
|
|
0x1f83d9abUL,
|
|
0x5be0cd19UL
|
|
};
|
|
|
|
/* Hash constant words K for SHA-384 and SHA-512: */
|
|
static const u_int64_t K512[80] = {
|
|
0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
|
|
0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
|
|
0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
|
|
0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
|
|
0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
|
|
0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
|
|
0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
|
|
0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
|
|
0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
|
|
0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
|
|
0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
|
|
0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
|
|
0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
|
|
0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
|
|
0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
|
|
0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
|
|
0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
|
|
0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
|
|
0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
|
|
0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
|
|
0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
|
|
0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
|
|
0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
|
|
0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
|
|
0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
|
|
0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
|
|
0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
|
|
0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
|
|
0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
|
|
0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
|
|
0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
|
|
0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
|
|
0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
|
|
0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
|
|
0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
|
|
0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
|
|
0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
|
|
0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
|
|
0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
|
|
0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
|
|
};
|
|
|
|
/* Initial hash value H for SHA-384 */
|
|
static const u_int64_t sha384_initial_hash_value[8] = {
|
|
0xcbbb9d5dc1059ed8ULL,
|
|
0x629a292a367cd507ULL,
|
|
0x9159015a3070dd17ULL,
|
|
0x152fecd8f70e5939ULL,
|
|
0x67332667ffc00b31ULL,
|
|
0x8eb44a8768581511ULL,
|
|
0xdb0c2e0d64f98fa7ULL,
|
|
0x47b5481dbefa4fa4ULL
|
|
};
|
|
|
|
/* Initial hash value H for SHA-512 */
|
|
static const u_int64_t sha512_initial_hash_value[8] = {
|
|
0x6a09e667f3bcc908ULL,
|
|
0xbb67ae8584caa73bULL,
|
|
0x3c6ef372fe94f82bULL,
|
|
0xa54ff53a5f1d36f1ULL,
|
|
0x510e527fade682d1ULL,
|
|
0x9b05688c2b3e6c1fULL,
|
|
0x1f83d9abfb41bd6bULL,
|
|
0x5be0cd19137e2179ULL
|
|
};
|
|
|
|
|
|
/*------------------------------------------------------------------*\
|
|
SHA-256:
|
|
\*------------------------------------------------------------------*/
|
|
void sha256_init(sha256Context *context) {
|
|
|
|
if (context == NULL)
|
|
return;
|
|
bcopy(sha256_initial_hash_value, context->state, SHA256_DIGEST_LENGTH);
|
|
bzero(context->buffer, SHA256_BLOCK_LENGTH);
|
|
context->bitcount = 0;
|
|
}
|
|
|
|
#ifdef SHA2_UNROLL_TRANSFORM
|
|
|
|
/* Unrolled SHA-256 round macros: */
|
|
|
|
#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do { \
|
|
W256[j] = (u_int32_t)data[3] | ((u_int32_t)data[2] << 8) | \
|
|
((u_int32_t)data[1] << 16) | ((u_int32_t)data[0] << 24); \
|
|
data += 4; \
|
|
T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \
|
|
(d) += T1; \
|
|
(h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \
|
|
j++; \
|
|
} while(0)
|
|
|
|
#define ROUND256(a,b,c,d,e,f,g,h) do { \
|
|
s0 = W256[(j+1)&0x0f]; \
|
|
s0 = sigma0_256(s0); \
|
|
s1 = W256[(j+14)&0x0f]; \
|
|
s1 = sigma1_256(s1); \
|
|
T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + \
|
|
(W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
|
|
(d) += T1; \
|
|
(h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \
|
|
j++; \
|
|
} while(0)
|
|
|
|
void sha256_transform(sha256Context *context, const u_int8_t *data) {
|
|
|
|
u_int32_t a, b, c, d, e, f, g, h, s0, s1;
|
|
u_int32_t T1, *W256;
|
|
int j;
|
|
|
|
W256 = (u_int32_t *)context->buffer;
|
|
|
|
/* Initialize registers with the prev. intermediate value */
|
|
a = context->state[0];
|
|
b = context->state[1];
|
|
c = context->state[2];
|
|
d = context->state[3];
|
|
e = context->state[4];
|
|
f = context->state[5];
|
|
g = context->state[6];
|
|
h = context->state[7];
|
|
|
|
j = 0;
|
|
do {
|
|
/* Rounds 0 to 15 (unrolled): */
|
|
ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
|
|
ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
|
|
ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
|
|
ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
|
|
ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
|
|
ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
|
|
ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
|
|
ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
|
|
} while (j < 16);
|
|
|
|
/* Now for the remaining rounds to 64: */
|
|
do {
|
|
ROUND256(a,b,c,d,e,f,g,h);
|
|
ROUND256(h,a,b,c,d,e,f,g);
|
|
ROUND256(g,h,a,b,c,d,e,f);
|
|
ROUND256(f,g,h,a,b,c,d,e);
|
|
ROUND256(e,f,g,h,a,b,c,d);
|
|
ROUND256(d,e,f,g,h,a,b,c);
|
|
ROUND256(c,d,e,f,g,h,a,b);
|
|
ROUND256(b,c,d,e,f,g,h,a);
|
|
} while (j < 64);
|
|
|
|
/* Compute the current intermediate hash value */
|
|
context->state[0] += a;
|
|
context->state[1] += b;
|
|
context->state[2] += c;
|
|
context->state[3] += d;
|
|
context->state[4] += e;
|
|
context->state[5] += f;
|
|
context->state[6] += g;
|
|
context->state[7] += h;
|
|
|
|
/* Clean up */
|
|
a = b = c = d = e = f = g = h = T1 = 0;
|
|
}
|
|
|
|
#else /* SHA2_UNROLL_TRANSFORM */
|
|
|
|
void sha256_transform(sha256Context *context, const u_int8_t *data) {
|
|
|
|
u_int32_t a, b, c, d, e, f, g, h, s0, s1;
|
|
u_int32_t T1, T2, *W256;
|
|
int j;
|
|
|
|
W256 = (u_int32_t *)context->buffer;
|
|
|
|
/* Initialize registers with the prev. intermediate value */
|
|
a = context->state[0];
|
|
b = context->state[1];
|
|
c = context->state[2];
|
|
d = context->state[3];
|
|
e = context->state[4];
|
|
f = context->state[5];
|
|
g = context->state[6];
|
|
h = context->state[7];
|
|
|
|
j = 0;
|
|
do {
|
|
W256[j] = (u_int32_t)data[3] | ((u_int32_t)data[2] << 8) |
|
|
((u_int32_t)data[1] << 16) | ((u_int32_t)data[0] << 24);
|
|
data += 4;
|
|
/* Apply the SHA-256 compression function to update a..h */
|
|
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
|
|
T2 = Sigma0_256(a) + Maj(a, b, c);
|
|
h = g;
|
|
g = f;
|
|
f = e;
|
|
e = d + T1;
|
|
d = c;
|
|
c = b;
|
|
b = a;
|
|
a = T1 + T2;
|
|
|
|
j++;
|
|
} while (j < 16);
|
|
|
|
do {
|
|
/* Part of the message block expansion: */
|
|
s0 = W256[(j+1)&0x0f];
|
|
s0 = sigma0_256(s0);
|
|
s1 = W256[(j+14)&0x0f];
|
|
s1 = sigma1_256(s1);
|
|
|
|
/* Apply the SHA-256 compression function to update a..h */
|
|
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
|
|
(W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
|
|
T2 = Sigma0_256(a) + Maj(a, b, c);
|
|
h = g;
|
|
g = f;
|
|
f = e;
|
|
e = d + T1;
|
|
d = c;
|
|
c = b;
|
|
b = a;
|
|
a = T1 + T2;
|
|
|
|
j++;
|
|
} while (j < 64);
|
|
|
|
/* Compute the current intermediate hash value */
|
|
context->state[0] += a;
|
|
context->state[1] += b;
|
|
context->state[2] += c;
|
|
context->state[3] += d;
|
|
context->state[4] += e;
|
|
context->state[5] += f;
|
|
context->state[6] += g;
|
|
context->state[7] += h;
|
|
|
|
/* Clean up */
|
|
a = b = c = d = e = f = g = h = T1 = T2 = 0;
|
|
}
|
|
|
|
#endif /* SHA2_UNROLL_TRANSFORM */
|
|
|
|
void sha256_update(sha256Context *context, const u_int8_t *data, size_t len) {
|
|
|
|
size_t freespace, usedspace;
|
|
|
|
/* Calling with no data is valid (we do nothing) */
|
|
if (len == 0)
|
|
return;
|
|
|
|
usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
|
|
if (usedspace > 0) {
|
|
/* Calculate how much free space is available in the buffer */
|
|
freespace = SHA256_BLOCK_LENGTH - usedspace;
|
|
|
|
if (len >= freespace) {
|
|
/* Fill the buffer completely and process it */
|
|
bcopy(data, &context->buffer[usedspace], freespace);
|
|
context->bitcount += freespace << 3;
|
|
len -= freespace;
|
|
data += freespace;
|
|
sha256_transform(context, context->buffer);
|
|
} else {
|
|
/* The buffer is not yet full */
|
|
bcopy(data, &context->buffer[usedspace], len);
|
|
context->bitcount += len << 3;
|
|
/* Clean up: */
|
|
usedspace = freespace = 0;
|
|
return;
|
|
}
|
|
}
|
|
while (len >= SHA256_BLOCK_LENGTH) {
|
|
/* Process as many complete blocks as we can */
|
|
sha256_transform(context, data);
|
|
context->bitcount += SHA256_BLOCK_LENGTH << 3;
|
|
len -= SHA256_BLOCK_LENGTH;
|
|
data += SHA256_BLOCK_LENGTH;
|
|
}
|
|
if (len > 0) {
|
|
/* There's left-overs, so save 'em */
|
|
bcopy(data, context->buffer, len);
|
|
context->bitcount += len << 3;
|
|
}
|
|
/* Clean up: */
|
|
usedspace = freespace = 0;
|
|
}
|
|
|
|
void sha256_final(u_int8_t digest[], sha256Context *context) {
|
|
|
|
u_int32_t *d = (u_int32_t *)digest;
|
|
unsigned int usedspace;
|
|
|
|
/* If no digest buffer is passed, we don't bother doing this: */
|
|
if (digest != NULL) {
|
|
usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
/* Convert FROM host byte order */
|
|
REVERSE64(context->bitcount,context->bitcount);
|
|
#endif
|
|
if (usedspace > 0) {
|
|
/* Begin padding with a 1 bit: */
|
|
context->buffer[usedspace++] = 0x80;
|
|
|
|
if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
|
|
/* Set-up for the last transform: */
|
|
bzero(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
|
|
} else {
|
|
if (usedspace < SHA256_BLOCK_LENGTH) {
|
|
bzero(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
|
|
}
|
|
/* Do second-to-last transform: */
|
|
sha256_transform(context, context->buffer);
|
|
|
|
/* And set-up for the last transform: */
|
|
bzero(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
|
|
}
|
|
} else {
|
|
/* Set-up for the last transform: */
|
|
bzero(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
|
|
|
|
/* Begin padding with a 1 bit: */
|
|
*context->buffer = 0x80;
|
|
}
|
|
/* Set the bit count: */
|
|
*(u_int64_t *)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
|
|
|
|
/* Final transform: */
|
|
sha256_transform(context, context->buffer);
|
|
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
{
|
|
/* Convert TO host byte order */
|
|
int j;
|
|
for (j = 0; j < 8; j++) {
|
|
REVERSE32(context->state[j],context->state[j]);
|
|
*d++ = context->state[j];
|
|
}
|
|
}
|
|
#else
|
|
bcopy(context->state, d, SHA256_DIGEST_LENGTH);
|
|
#endif
|
|
}
|
|
|
|
/* Clean up state data: */
|
|
bzero(context, sizeof(*context));
|
|
usedspace = 0;
|
|
}
|
|
|
|
/*------------------------------------------------------------------*\
|
|
SHA-512:
|
|
\*------------------------------------------------------------------*/
|
|
void sha512_init(sha512Context *context) {
|
|
|
|
if (context == NULL)
|
|
return;
|
|
bcopy(sha512_initial_hash_value, context->state, SHA512_DIGEST_LENGTH);
|
|
bzero(context->buffer, SHA512_BLOCK_LENGTH);
|
|
context->bitcount[0] = context->bitcount[1] = 0;
|
|
}
|
|
|
|
#ifdef SHA2_UNROLL_TRANSFORM
|
|
|
|
/* Unrolled SHA-512 round macros: */
|
|
|
|
#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do { \
|
|
W512[j] = (u_int64_t)data[7] | ((u_int64_t)data[6] << 8) | \
|
|
((u_int64_t)data[5] << 16) | ((u_int64_t)data[4] << 24) | \
|
|
((u_int64_t)data[3] << 32) | ((u_int64_t)data[2] << 40) | \
|
|
((u_int64_t)data[1] << 48) | ((u_int64_t)data[0] << 56); \
|
|
data += 8; \
|
|
T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \
|
|
(d) += T1; \
|
|
(h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \
|
|
j++; \
|
|
} while(0)
|
|
|
|
|
|
#define ROUND512(a,b,c,d,e,f,g,h) do { \
|
|
s0 = W512[(j+1)&0x0f]; \
|
|
s0 = sigma0_512(s0); \
|
|
s1 = W512[(j+14)&0x0f]; \
|
|
s1 = sigma1_512(s1); \
|
|
T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + \
|
|
(W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
|
|
(d) += T1; \
|
|
(h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \
|
|
j++; \
|
|
} while(0)
|
|
|
|
void sha512_transform(sha512Context *context, const u_int8_t *data) {
|
|
|
|
u_int64_t a, b, c, d, e, f, g, h, s0, s1;
|
|
u_int64_t T1, *W512 = (u_int64_t *)context->buffer;
|
|
int j;
|
|
|
|
/* Initialize registers with the prev. intermediate value */
|
|
a = context->state[0];
|
|
b = context->state[1];
|
|
c = context->state[2];
|
|
d = context->state[3];
|
|
e = context->state[4];
|
|
f = context->state[5];
|
|
g = context->state[6];
|
|
h = context->state[7];
|
|
|
|
j = 0;
|
|
do {
|
|
ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
|
|
ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
|
|
ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
|
|
ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
|
|
ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
|
|
ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
|
|
ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
|
|
ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
|
|
} while (j < 16);
|
|
|
|
/* Now for the remaining rounds up to 79: */
|
|
do {
|
|
ROUND512(a,b,c,d,e,f,g,h);
|
|
ROUND512(h,a,b,c,d,e,f,g);
|
|
ROUND512(g,h,a,b,c,d,e,f);
|
|
ROUND512(f,g,h,a,b,c,d,e);
|
|
ROUND512(e,f,g,h,a,b,c,d);
|
|
ROUND512(d,e,f,g,h,a,b,c);
|
|
ROUND512(c,d,e,f,g,h,a,b);
|
|
ROUND512(b,c,d,e,f,g,h,a);
|
|
} while (j < 80);
|
|
|
|
/* Compute the current intermediate hash value */
|
|
context->state[0] += a;
|
|
context->state[1] += b;
|
|
context->state[2] += c;
|
|
context->state[3] += d;
|
|
context->state[4] += e;
|
|
context->state[5] += f;
|
|
context->state[6] += g;
|
|
context->state[7] += h;
|
|
|
|
/* Clean up */
|
|
a = b = c = d = e = f = g = h = T1 = 0;
|
|
}
|
|
|
|
#else /* SHA2_UNROLL_TRANSFORM */
|
|
|
|
void sha512_transform(sha512Context *context, const u_int8_t *data) {
|
|
|
|
u_int64_t a, b, c, d, e, f, g, h, s0, s1;
|
|
u_int64_t T1, T2, *W512 = (u_int64_t *)context->buffer;
|
|
int j;
|
|
|
|
/* Initialize registers with the prev. intermediate value */
|
|
a = context->state[0];
|
|
b = context->state[1];
|
|
c = context->state[2];
|
|
d = context->state[3];
|
|
e = context->state[4];
|
|
f = context->state[5];
|
|
g = context->state[6];
|
|
h = context->state[7];
|
|
|
|
j = 0;
|
|
do {
|
|
W512[j] = (u_int64_t)data[7] | ((u_int64_t)data[6] << 8) |
|
|
((u_int64_t)data[5] << 16) | ((u_int64_t)data[4] << 24) |
|
|
((u_int64_t)data[3] << 32) | ((u_int64_t)data[2] << 40) |
|
|
((u_int64_t)data[1] << 48) | ((u_int64_t)data[0] << 56);
|
|
data += 8;
|
|
/* Apply the SHA-512 compression function to update a..h */
|
|
T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
|
|
T2 = Sigma0_512(a) + Maj(a, b, c);
|
|
h = g;
|
|
g = f;
|
|
f = e;
|
|
e = d + T1;
|
|
d = c;
|
|
c = b;
|
|
b = a;
|
|
a = T1 + T2;
|
|
|
|
j++;
|
|
} while (j < 16);
|
|
|
|
do {
|
|
/* Part of the message block expansion: */
|
|
s0 = W512[(j+1)&0x0f];
|
|
s0 = sigma0_512(s0);
|
|
s1 = W512[(j+14)&0x0f];
|
|
s1 = sigma1_512(s1);
|
|
|
|
/* Apply the SHA-512 compression function to update a..h */
|
|
T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
|
|
(W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
|
|
T2 = Sigma0_512(a) + Maj(a, b, c);
|
|
h = g;
|
|
g = f;
|
|
f = e;
|
|
e = d + T1;
|
|
d = c;
|
|
c = b;
|
|
b = a;
|
|
a = T1 + T2;
|
|
|
|
j++;
|
|
} while (j < 80);
|
|
|
|
/* Compute the current intermediate hash value */
|
|
context->state[0] += a;
|
|
context->state[1] += b;
|
|
context->state[2] += c;
|
|
context->state[3] += d;
|
|
context->state[4] += e;
|
|
context->state[5] += f;
|
|
context->state[6] += g;
|
|
context->state[7] += h;
|
|
|
|
/* Clean up */
|
|
a = b = c = d = e = f = g = h = T1 = T2 = 0;
|
|
}
|
|
|
|
#endif /* SHA2_UNROLL_TRANSFORM */
|
|
|
|
void sha512_update(sha512Context *context, const u_int8_t *data, size_t len) {
|
|
|
|
size_t freespace, usedspace;
|
|
|
|
/* Calling with no data is valid (we do nothing) */
|
|
if (len == 0)
|
|
return;
|
|
|
|
usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
|
|
if (usedspace > 0) {
|
|
/* Calculate how much free space is available in the buffer */
|
|
freespace = SHA512_BLOCK_LENGTH - usedspace;
|
|
|
|
if (len >= freespace) {
|
|
/* Fill the buffer completely and process it */
|
|
bcopy(data, &context->buffer[usedspace], freespace);
|
|
ADDINC128(context->bitcount, freespace << 3);
|
|
len -= freespace;
|
|
data += freespace;
|
|
sha512_transform(context, context->buffer);
|
|
} else {
|
|
/* The buffer is not yet full */
|
|
bcopy(data, &context->buffer[usedspace], len);
|
|
ADDINC128(context->bitcount, len << 3);
|
|
/* Clean up: */
|
|
usedspace = freespace = 0;
|
|
return;
|
|
}
|
|
}
|
|
while (len >= SHA512_BLOCK_LENGTH) {
|
|
/* Process as many complete blocks as we can */
|
|
sha512_transform(context, data);
|
|
ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
|
|
len -= SHA512_BLOCK_LENGTH;
|
|
data += SHA512_BLOCK_LENGTH;
|
|
}
|
|
if (len > 0) {
|
|
/* There's left-overs, so save 'em */
|
|
bcopy(data, context->buffer, len);
|
|
ADDINC128(context->bitcount, len << 3);
|
|
}
|
|
/* Clean up: */
|
|
usedspace = freespace = 0;
|
|
}
|
|
|
|
void sha512_last(sha512Context *context) {
|
|
|
|
unsigned int usedspace;
|
|
|
|
usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
/* Convert FROM host byte order */
|
|
REVERSE64(context->bitcount[0],context->bitcount[0]);
|
|
REVERSE64(context->bitcount[1],context->bitcount[1]);
|
|
#endif
|
|
if (usedspace > 0) {
|
|
/* Begin padding with a 1 bit: */
|
|
context->buffer[usedspace++] = 0x80;
|
|
|
|
if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
|
|
/* Set-up for the last transform: */
|
|
bzero(&context->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace);
|
|
} else {
|
|
if (usedspace < SHA512_BLOCK_LENGTH) {
|
|
bzero(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace);
|
|
}
|
|
/* Do second-to-last transform: */
|
|
sha512_transform(context, context->buffer);
|
|
|
|
/* And set-up for the last transform: */
|
|
bzero(context->buffer, SHA512_BLOCK_LENGTH - 2);
|
|
}
|
|
} else {
|
|
/* Prepare for final transform: */
|
|
bzero(context->buffer, SHA512_SHORT_BLOCK_LENGTH);
|
|
|
|
/* Begin padding with a 1 bit: */
|
|
*context->buffer = 0x80;
|
|
}
|
|
/* Store the length of input data (in bits): */
|
|
*(u_int64_t *)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
|
|
*(u_int64_t *)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
|
|
|
|
/* Final transform: */
|
|
sha512_transform(context, context->buffer);
|
|
}
|
|
|
|
void sha512_final(u_int8_t digest[], sha512Context *context) {
|
|
|
|
u_int64_t *d = (u_int64_t *)digest;
|
|
|
|
/* If no digest buffer is passed, we don't bother doing this: */
|
|
if (digest != NULL) {
|
|
sha512_last(context);
|
|
|
|
/* Save the hash data for output: */
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
{
|
|
/* Convert TO host byte order */
|
|
int j;
|
|
for (j = 0; j < 8; j++) {
|
|
REVERSE64(context->state[j],context->state[j]);
|
|
*d++ = context->state[j];
|
|
}
|
|
}
|
|
#else
|
|
bcopy(context->state, d, SHA512_DIGEST_LENGTH);
|
|
#endif
|
|
}
|
|
|
|
/* Zero out state data */
|
|
bzero(context, sizeof(*context));
|
|
}
|
|
|
|
/*------------------------------------------------------------------*\
|
|
SHA-384:
|
|
\*------------------------------------------------------------------*/
|
|
void sha384_init(sha384Context *context) {
|
|
|
|
if (context == NULL)
|
|
return;
|
|
bcopy(sha384_initial_hash_value, context->state, SHA512_DIGEST_LENGTH);
|
|
bzero(context->buffer, SHA384_BLOCK_LENGTH);
|
|
context->bitcount[0] = context->bitcount[1] = 0;
|
|
}
|
|
|
|
void sha384_update(sha384Context *context, const u_int8_t *data, size_t len) {
|
|
|
|
sha512_update((sha512Context *)context, data, len);
|
|
}
|
|
|
|
void sha384_final(u_int8_t digest[], sha384Context *context) {
|
|
|
|
u_int64_t *d = (u_int64_t *)digest;
|
|
|
|
/* If no digest buffer is passed, we don't bother doing this: */
|
|
if (digest != NULL) {
|
|
sha512_last((sha512Context *)context);
|
|
|
|
/* Save the hash data for output: */
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
{
|
|
/* Convert TO host byte order */
|
|
int j;
|
|
for (j = 0; j < 6; j++) {
|
|
REVERSE64(context->state[j],context->state[j]);
|
|
*d++ = context->state[j];
|
|
}
|
|
}
|
|
#else
|
|
bcopy(context->state, d, SHA384_DIGEST_LENGTH);
|
|
#endif
|
|
}
|
|
|
|
/* Zero out state data */
|
|
bzero(context, sizeof(*context));
|
|
}
|
|
|
|
/* ---------------------------------------------------------------- *\
|
|
\* ---------------------------------------------------------------- */
|
|
|
|
enum {
|
|
NONE = 0,
|
|
SHA256 = 256,
|
|
SHA384 = 384,
|
|
SHA512 = 512
|
|
};
|
|
|
|
#ifndef STAND_ALONE
|
|
|
|
static char* userhash = NULL;
|
|
static unsigned int method = 0;
|
|
static char* method_string = NULL;
|
|
static size_t method_digest_string_length = 0;
|
|
|
|
|
|
static int alock_auth_sha2_init(const char* args) {
|
|
|
|
if (!args) {
|
|
fprintf(stderr, "alock: error, missing arguments for [sha2].\n");
|
|
return 0;
|
|
}
|
|
|
|
if (strstr(args, "sha256:") == args) {
|
|
method = SHA256;
|
|
method_string = strdup("sha256");
|
|
method_digest_string_length = SHA256_DIGEST_STRING_LENGTH;
|
|
} else if (strstr(args, "sha512:") == args) {
|
|
method = SHA512;
|
|
method_string = strdup("sha512");
|
|
method_digest_string_length = SHA512_DIGEST_STRING_LENGTH;
|
|
} else if (strstr(args, "sha384:") == args) {
|
|
method = SHA384;
|
|
method_string = strdup("sha384");
|
|
method_digest_string_length = SHA384_DIGEST_STRING_LENGTH;
|
|
} else {
|
|
fprintf(stderr, "alock: error, not supported hash in [sha2].\n");
|
|
return 0;
|
|
}
|
|
|
|
if (strlen(&args[7]) > 0) {
|
|
|
|
char* arguments = strdup(&args[7]);
|
|
char* tmp;
|
|
char* arg = NULL;
|
|
|
|
for (tmp = arguments; tmp; ) {
|
|
arg = strsep(&tmp, ",");
|
|
if (arg && !userhash) {
|
|
if (strstr(arg, "hash=") == arg && strlen(arg) > 5) {
|
|
if (strlen(&arg[5]) == method_digest_string_length - 1) {
|
|
if (!userhash)
|
|
userhash = strdup(&arg[5]);
|
|
} else {
|
|
fprintf(stderr, "alock: error, missing or incorrect hash for [%s].\n", method_string);
|
|
free(arguments);
|
|
return 0;
|
|
}
|
|
} else if (strstr(arg, "file=") == arg && strlen(arg) > 6) {
|
|
char* tmp_hash = NULL;
|
|
FILE* hashfile = fopen(&arg[5], "r");
|
|
if (hashfile) {
|
|
int c;
|
|
size_t i = 0;
|
|
tmp_hash = (char*)malloc(method_digest_string_length);
|
|
memset(tmp_hash, 0, method_digest_string_length);
|
|
for(i = 0, c = fgetc(hashfile);
|
|
i < method_digest_string_length - 1 && c != EOF; i++, c = fgetc(hashfile)) {
|
|
tmp_hash[i] = c;
|
|
}
|
|
fclose(hashfile);
|
|
} else {
|
|
fprintf(stderr, "alock: error, couldnt read [%s] for [%s].\n",
|
|
&arg[5], method_string);
|
|
free(method_string);
|
|
free(arguments);
|
|
return 0;
|
|
}
|
|
|
|
if (!tmp_hash || strlen(tmp_hash) != method_digest_string_length - 1) {
|
|
fprintf(stderr, "alock: error, given file [%s] doesnt contain a valid hash for [%s].\n",
|
|
&arg[5], method_string);
|
|
if (tmp_hash)
|
|
free(tmp_hash);
|
|
free(method_string);
|
|
free(arguments);
|
|
return 0;
|
|
}
|
|
|
|
userhash = tmp_hash;
|
|
}
|
|
}
|
|
}
|
|
free(arguments);
|
|
} else {
|
|
fprintf(stderr, "alock: error, missing arguments for [%s].\n", method_string);
|
|
free(method_string);
|
|
return 0;
|
|
}
|
|
|
|
if (!userhash) {
|
|
fprintf(stderr, "alock: error, missing hash for [%s].\n", method_string);
|
|
free(method_string);
|
|
return 0;
|
|
}
|
|
|
|
alock_string2lower(userhash);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int alock_auth_sha2_deinit() {
|
|
|
|
if (userhash)
|
|
free(userhash);
|
|
|
|
userhash = NULL;
|
|
if (method_string)
|
|
free(method_string);
|
|
method_string = NULL;
|
|
method = NONE;
|
|
method_digest_string_length = 0;
|
|
return 1;
|
|
}
|
|
|
|
static int alock_auth_sha2_auth(const char* pass) {
|
|
|
|
if (!pass || strlen(pass) < 1 || !userhash || !method)
|
|
return 0;
|
|
|
|
switch (method) {
|
|
case SHA256: {
|
|
unsigned char digest[SHA256_DIGEST_LENGTH];
|
|
unsigned char stringdigest[SHA256_DIGEST_STRING_LENGTH];
|
|
unsigned int i;
|
|
sha256Context sha256;
|
|
|
|
sha256_init(&sha256);
|
|
sha256_update(&sha256, (unsigned char*)pass, strlen(pass));
|
|
sha256_final(digest, &sha256);
|
|
|
|
memset(stringdigest, 0, SHA256_DIGEST_STRING_LENGTH);
|
|
for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
|
|
sprintf((char*)&stringdigest[i*2], "%02x", digest[i]);
|
|
}
|
|
return (strcmp((char*)stringdigest, userhash) == 0);
|
|
}
|
|
break;
|
|
case SHA512: {
|
|
unsigned char digest[SHA512_DIGEST_LENGTH];
|
|
unsigned char stringdigest[SHA512_DIGEST_STRING_LENGTH];
|
|
unsigned int i;
|
|
sha512Context sha512;
|
|
|
|
sha512_init(&sha512);
|
|
sha512_update(&sha512, (unsigned char*)pass, strlen(pass));
|
|
sha512_final(digest, &sha512);
|
|
|
|
memset(stringdigest, 0, SHA512_DIGEST_STRING_LENGTH);
|
|
for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
|
|
sprintf((char*)&stringdigest[i*2], "%02x", digest[i]);
|
|
}
|
|
return (strcmp((char*)stringdigest, userhash) == 0);
|
|
}
|
|
break;
|
|
case SHA384: {
|
|
unsigned char digest[SHA384_DIGEST_LENGTH];
|
|
unsigned char stringdigest[SHA384_DIGEST_STRING_LENGTH];
|
|
unsigned int i;
|
|
sha384Context sha384;
|
|
|
|
sha384_init(&sha384);
|
|
sha384_update(&sha384, (unsigned char*)pass, strlen(pass));
|
|
sha384_final(digest, &sha384);
|
|
|
|
memset(stringdigest, 0, SHA384_DIGEST_STRING_LENGTH);
|
|
for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
|
|
sprintf((char*)&stringdigest[i*2], "%02x", digest[i]);
|
|
}
|
|
return (strcmp((char*)stringdigest, userhash) == 0);
|
|
}
|
|
break;
|
|
};
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct aAuth alock_auth_sha256 = {
|
|
"sha256",
|
|
alock_auth_sha2_init,
|
|
alock_auth_sha2_auth,
|
|
alock_auth_sha2_deinit
|
|
};
|
|
|
|
struct aAuth alock_auth_sha384 = {
|
|
"sha384",
|
|
alock_auth_sha2_init,
|
|
alock_auth_sha2_auth,
|
|
alock_auth_sha2_deinit
|
|
};
|
|
|
|
struct aAuth alock_auth_sha512 = {
|
|
"sha512",
|
|
alock_auth_sha2_init,
|
|
alock_auth_sha2_auth,
|
|
alock_auth_sha2_deinit
|
|
};
|
|
|
|
|
|
|
|
/* ---------------------------------------------------------------- *\
|
|
\* ---------------------------------------------------------------- */
|
|
#else
|
|
|
|
void usage() {
|
|
printf("asha2 - reads from stdin to calculate a sha2-hash.\n"
|
|
"usage:\n"
|
|
" asha2 <256|384|512>\n");
|
|
}
|
|
|
|
int main(int argc, char* argv[]) {
|
|
|
|
unsigned char digest[SHA512_DIGEST_LENGTH];
|
|
size_t i;
|
|
unsigned char c;
|
|
unsigned int method = 0;
|
|
size_t method_digest_length = 0;
|
|
|
|
if (argc < 2 || strlen(argv[1]) < 3) {
|
|
usage();
|
|
exit(EXIT_SUCCESS);
|
|
}
|
|
|
|
if (strncmp("256", argv[1], 3) == 0)
|
|
method = SHA256;
|
|
else if (strncmp("384", argv[1], 3) == 0)
|
|
method = SHA384;
|
|
else if (strncmp("512", argv[1], 3) == 0)
|
|
method = SHA512;
|
|
else
|
|
method = NONE;
|
|
|
|
switch (method) {
|
|
|
|
case SHA256: {
|
|
sha256Context sha256;
|
|
sha256_init(&sha256);
|
|
while((c = fgetc(stdin)) != (unsigned char)EOF) {
|
|
sha256_update(&sha256, &c, 1);
|
|
}
|
|
sha256_final(digest, &sha256);
|
|
method_digest_length = SHA256_DIGEST_LENGTH;
|
|
}
|
|
break;
|
|
case SHA384: {
|
|
sha384Context sha384;
|
|
sha384_init(&sha384);
|
|
while((c = fgetc(stdin)) != (unsigned char)EOF) {
|
|
sha384_update(&sha384, &c, 1);
|
|
}
|
|
sha384_final(digest, &sha384);
|
|
method_digest_length = SHA384_DIGEST_LENGTH;
|
|
}
|
|
break;
|
|
case SHA512: {
|
|
sha512Context sha512;
|
|
sha512_init(&sha512);
|
|
while((c = fgetc(stdin)) != (unsigned char)EOF) {
|
|
sha512_update(&sha512, &c, 1);
|
|
}
|
|
sha512_final(digest, &sha512);
|
|
method_digest_length = SHA512_DIGEST_LENGTH;
|
|
}
|
|
break;
|
|
default:
|
|
usage();
|
|
exit(EXIT_FAILURE);
|
|
break;
|
|
};
|
|
|
|
for(i = 0; i < method_digest_length; ++i)
|
|
printf("%02x", digest[i]);
|
|
printf("\n");
|
|
fflush(stdout);
|
|
|
|
return EXIT_SUCCESS;
|
|
}
|
|
|
|
#endif /* STAND_ALONE */
|
|
|
|
/* ---------------------------------------------------------------- *\
|
|
\* ---------------------------------------------------------------- */
|
|
|