This repository has been archived on 2025-02-01. You can view files and clone it, but cannot push or open issues or pull requests.
alock/src/auth_sha2.c
mathias.gumz ccca6f24dd * cosmetics (dates, ws, ordering, header cosmetics)
* mentioned code contributors in the docu (even the "passive"
  ones as openbsd etc)

--HG--
extra : convert_revision : svn%3Aeebe1cee-a9af-4fe4-bd26-ad572b19c5ab/trunk%4064
2007-03-17 18:45:36 +00:00

1164 lines
37 KiB
C

/* ---------------------------------------------------------------- *\
file : auth_sha2.c
author : m. gumz <akira at fluxbox dot org>
copyr : copyright (c) 2005 - 2007 by m. gumz
license : based on: openbsd sha2.c/h
SHA-2 in C
Aaron D. Gifford <me@aarongifford.com>
100% Public Domain
start : So 08 Mai 2005 13:21:45 CEST
\* ---------------------------------------------------------------- */
/* ---------------------------------------------------------------- *\
about :
provide -auth sha256:hash=<hash>,file=<filename>
provide -auth sha384:hash=<hash>,file=<filename>
provide -auth sha512:hash=<hash>,file=<filename>
\* ---------------------------------------------------------------- */
/* ---------------------------------------------------------------- *\
includes
\* ---------------------------------------------------------------- */
#ifndef STAND_ALONE
# include <X11/Xlib.h>
# include "alock.h"
#endif /* STAND_ALONE */
#include <sys/types.h>
#include <sys/cdefs.h>
#include <sys/param.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
/*------------------------------------------------------------------*\
\*------------------------------------------------------------------*/
enum {
SHA256_BLOCK_LENGTH = 64,
SHA256_SHORT_BLOCK_LENGTH = (SHA256_BLOCK_LENGTH - 8),
SHA256_DIGEST_LENGTH = 32,
SHA256_DIGEST_STRING_LENGTH = (SHA256_DIGEST_LENGTH * 2 + 1),
SHA384_BLOCK_LENGTH = 128,
SHA384_SHORT_BLOCK_LENGTH = (SHA384_BLOCK_LENGTH - 16),
SHA384_DIGEST_LENGTH = 48,
SHA384_DIGEST_STRING_LENGTH = (SHA384_DIGEST_LENGTH * 2 + 1),
SHA512_BLOCK_LENGTH = 128,
SHA512_SHORT_BLOCK_LENGTH = (SHA512_BLOCK_LENGTH - 16),
SHA512_DIGEST_LENGTH = 64,
SHA512_DIGEST_STRING_LENGTH = (SHA512_DIGEST_LENGTH * 2 + 1)
};
typedef struct _sha256Context {
u_int32_t state[8];
u_int64_t bitcount;
u_int8_t buffer[SHA256_BLOCK_LENGTH];
} sha256Context;
typedef struct _sha512Context {
u_int64_t state[8];
u_int64_t bitcount[2];
u_int8_t buffer[SHA512_BLOCK_LENGTH];
} sha512Context;
typedef sha512Context sha384Context;
static void sha256_init(sha256Context *);
static void sha256_update(sha256Context *, const u_int8_t *, size_t);
static void sha256_final(u_int8_t[SHA256_DIGEST_LENGTH], sha256Context *);
static void sha256_transform(sha256Context *, const u_int8_t *);
static void sha384_init(sha384Context *);
static void sha384_update(sha384Context *, const u_int8_t *, size_t);
static void sha384_final(u_int8_t[SHA384_DIGEST_LENGTH], sha384Context *);
static void sha512_init(sha512Context *);
static void sha512_update(sha512Context *, const u_int8_t *, size_t);
static void sha512_final(u_int8_t[SHA512_DIGEST_LENGTH], sha512Context *);
static void sha512_last(sha512Context *);
static void sha512_transform(sha512Context *, const u_int8_t *);
/*** ENDIAN REVERSAL MACROS *******************************************/
#if BYTE_ORDER == LITTLE_ENDIAN
#define REVERSE32(w,x) { \
u_int32_t tmp = (w); \
tmp = (tmp >> 16) | (tmp << 16); \
(x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
}
#define REVERSE64(w,x) { \
u_int64_t tmp = (w); \
tmp = (tmp >> 32) | (tmp << 32); \
tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
((tmp & 0x00ff00ff00ff00ffULL) << 8); \
(x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
((tmp & 0x0000ffff0000ffffULL) << 16); \
}
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
/*------------------------------------------------------------------*\
Macro for incrementally adding the unsigned 64-bit integer n to the
unsigned 128-bit integer (represented using a two-element array of
64-bit words):
\*------------------------------------------------------------------*/
#define ADDINC128(w,n) { \
(w)[0] += (u_int64_t)(n); \
if ((w)[0] < (n)) { \
(w)[1]++; \
} \
}
/*------------------------------------------------------------------*\
THE SIX LOGICAL FUNCTIONS
Bit shifting and rotation (used by the six SHA-XYZ logical functions:
NOTE: The naming of R and S appears backwards here (R is a SHIFT and
S is a ROTATION) because the SHA-256/384/512 description document
(see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
same "backwards" definition.
\*------------------------------------------------------------------*/
/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
#define R(b,x) ((x) >> (b))
/* 32-bit Rotate-right (used in SHA-256): */
#define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
#define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
/* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
/* Four of six logical functions used in SHA-256: */
#define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
#define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
#define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
#define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
/* Four of six logical functions used in SHA-384 and SHA-512: */
#define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
#define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
#define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
#define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
/*------------------------------------------------------------------*\
SHA-XYZ INITIAL HASH VALUES AND CONSTANTS
\*------------------------------------------------------------------*/
static const u_int32_t K256[64] = {
0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
};
/* Initial hash value H for SHA-256: */
static const u_int32_t sha256_initial_hash_value[8] = {
0x6a09e667UL,
0xbb67ae85UL,
0x3c6ef372UL,
0xa54ff53aUL,
0x510e527fUL,
0x9b05688cUL,
0x1f83d9abUL,
0x5be0cd19UL
};
/* Hash constant words K for SHA-384 and SHA-512: */
static const u_int64_t K512[80] = {
0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
};
/* Initial hash value H for SHA-384 */
static const u_int64_t sha384_initial_hash_value[8] = {
0xcbbb9d5dc1059ed8ULL,
0x629a292a367cd507ULL,
0x9159015a3070dd17ULL,
0x152fecd8f70e5939ULL,
0x67332667ffc00b31ULL,
0x8eb44a8768581511ULL,
0xdb0c2e0d64f98fa7ULL,
0x47b5481dbefa4fa4ULL
};
/* Initial hash value H for SHA-512 */
static const u_int64_t sha512_initial_hash_value[8] = {
0x6a09e667f3bcc908ULL,
0xbb67ae8584caa73bULL,
0x3c6ef372fe94f82bULL,
0xa54ff53a5f1d36f1ULL,
0x510e527fade682d1ULL,
0x9b05688c2b3e6c1fULL,
0x1f83d9abfb41bd6bULL,
0x5be0cd19137e2179ULL
};
/*------------------------------------------------------------------*\
SHA-256:
\*------------------------------------------------------------------*/
void sha256_init(sha256Context *context) {
if (context == NULL)
return;
bcopy(sha256_initial_hash_value, context->state, SHA256_DIGEST_LENGTH);
bzero(context->buffer, SHA256_BLOCK_LENGTH);
context->bitcount = 0;
}
#ifdef SHA2_UNROLL_TRANSFORM
/* Unrolled SHA-256 round macros: */
#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do { \
W256[j] = (u_int32_t)data[3] | ((u_int32_t)data[2] << 8) | \
((u_int32_t)data[1] << 16) | ((u_int32_t)data[0] << 24); \
data += 4; \
T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \
(d) += T1; \
(h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \
j++; \
} while(0)
#define ROUND256(a,b,c,d,e,f,g,h) do { \
s0 = W256[(j+1)&0x0f]; \
s0 = sigma0_256(s0); \
s1 = W256[(j+14)&0x0f]; \
s1 = sigma1_256(s1); \
T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + \
(W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
(d) += T1; \
(h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \
j++; \
} while(0)
void sha256_transform(sha256Context *context, const u_int8_t *data) {
u_int32_t a, b, c, d, e, f, g, h, s0, s1;
u_int32_t T1, *W256;
int j;
W256 = (u_int32_t *)context->buffer;
/* Initialize registers with the prev. intermediate value */
a = context->state[0];
b = context->state[1];
c = context->state[2];
d = context->state[3];
e = context->state[4];
f = context->state[5];
g = context->state[6];
h = context->state[7];
j = 0;
do {
/* Rounds 0 to 15 (unrolled): */
ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
} while (j < 16);
/* Now for the remaining rounds to 64: */
do {
ROUND256(a,b,c,d,e,f,g,h);
ROUND256(h,a,b,c,d,e,f,g);
ROUND256(g,h,a,b,c,d,e,f);
ROUND256(f,g,h,a,b,c,d,e);
ROUND256(e,f,g,h,a,b,c,d);
ROUND256(d,e,f,g,h,a,b,c);
ROUND256(c,d,e,f,g,h,a,b);
ROUND256(b,c,d,e,f,g,h,a);
} while (j < 64);
/* Compute the current intermediate hash value */
context->state[0] += a;
context->state[1] += b;
context->state[2] += c;
context->state[3] += d;
context->state[4] += e;
context->state[5] += f;
context->state[6] += g;
context->state[7] += h;
/* Clean up */
a = b = c = d = e = f = g = h = T1 = 0;
}
#else /* SHA2_UNROLL_TRANSFORM */
void sha256_transform(sha256Context *context, const u_int8_t *data) {
u_int32_t a, b, c, d, e, f, g, h, s0, s1;
u_int32_t T1, T2, *W256;
int j;
W256 = (u_int32_t *)context->buffer;
/* Initialize registers with the prev. intermediate value */
a = context->state[0];
b = context->state[1];
c = context->state[2];
d = context->state[3];
e = context->state[4];
f = context->state[5];
g = context->state[6];
h = context->state[7];
j = 0;
do {
W256[j] = (u_int32_t)data[3] | ((u_int32_t)data[2] << 8) |
((u_int32_t)data[1] << 16) | ((u_int32_t)data[0] << 24);
data += 4;
/* Apply the SHA-256 compression function to update a..h */
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
T2 = Sigma0_256(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
} while (j < 16);
do {
/* Part of the message block expansion: */
s0 = W256[(j+1)&0x0f];
s0 = sigma0_256(s0);
s1 = W256[(j+14)&0x0f];
s1 = sigma1_256(s1);
/* Apply the SHA-256 compression function to update a..h */
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
(W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
T2 = Sigma0_256(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
} while (j < 64);
/* Compute the current intermediate hash value */
context->state[0] += a;
context->state[1] += b;
context->state[2] += c;
context->state[3] += d;
context->state[4] += e;
context->state[5] += f;
context->state[6] += g;
context->state[7] += h;
/* Clean up */
a = b = c = d = e = f = g = h = T1 = T2 = 0;
}
#endif /* SHA2_UNROLL_TRANSFORM */
void sha256_update(sha256Context *context, const u_int8_t *data, size_t len) {
size_t freespace, usedspace;
/* Calling with no data is valid (we do nothing) */
if (len == 0)
return;
usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
if (usedspace > 0) {
/* Calculate how much free space is available in the buffer */
freespace = SHA256_BLOCK_LENGTH - usedspace;
if (len >= freespace) {
/* Fill the buffer completely and process it */
bcopy(data, &context->buffer[usedspace], freespace);
context->bitcount += freespace << 3;
len -= freespace;
data += freespace;
sha256_transform(context, context->buffer);
} else {
/* The buffer is not yet full */
bcopy(data, &context->buffer[usedspace], len);
context->bitcount += len << 3;
/* Clean up: */
usedspace = freespace = 0;
return;
}
}
while (len >= SHA256_BLOCK_LENGTH) {
/* Process as many complete blocks as we can */
sha256_transform(context, data);
context->bitcount += SHA256_BLOCK_LENGTH << 3;
len -= SHA256_BLOCK_LENGTH;
data += SHA256_BLOCK_LENGTH;
}
if (len > 0) {
/* There's left-overs, so save 'em */
bcopy(data, context->buffer, len);
context->bitcount += len << 3;
}
/* Clean up: */
usedspace = freespace = 0;
}
void sha256_final(u_int8_t digest[], sha256Context *context) {
u_int32_t *d = (u_int32_t *)digest;
unsigned int usedspace;
/* If no digest buffer is passed, we don't bother doing this: */
if (digest != NULL) {
usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
#if BYTE_ORDER == LITTLE_ENDIAN
/* Convert FROM host byte order */
REVERSE64(context->bitcount,context->bitcount);
#endif
if (usedspace > 0) {
/* Begin padding with a 1 bit: */
context->buffer[usedspace++] = 0x80;
if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
/* Set-up for the last transform: */
bzero(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
} else {
if (usedspace < SHA256_BLOCK_LENGTH) {
bzero(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
}
/* Do second-to-last transform: */
sha256_transform(context, context->buffer);
/* And set-up for the last transform: */
bzero(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
}
} else {
/* Set-up for the last transform: */
bzero(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
/* Begin padding with a 1 bit: */
*context->buffer = 0x80;
}
/* Set the bit count: */
*(u_int64_t *)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
/* Final transform: */
sha256_transform(context, context->buffer);
#if BYTE_ORDER == LITTLE_ENDIAN
{
/* Convert TO host byte order */
int j;
for (j = 0; j < 8; j++) {
REVERSE32(context->state[j],context->state[j]);
*d++ = context->state[j];
}
}
#else
bcopy(context->state, d, SHA256_DIGEST_LENGTH);
#endif
}
/* Clean up state data: */
bzero(context, sizeof(*context));
usedspace = 0;
}
/*------------------------------------------------------------------*\
SHA-512:
\*------------------------------------------------------------------*/
void sha512_init(sha512Context *context) {
if (context == NULL)
return;
bcopy(sha512_initial_hash_value, context->state, SHA512_DIGEST_LENGTH);
bzero(context->buffer, SHA512_BLOCK_LENGTH);
context->bitcount[0] = context->bitcount[1] = 0;
}
#ifdef SHA2_UNROLL_TRANSFORM
/* Unrolled SHA-512 round macros: */
#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do { \
W512[j] = (u_int64_t)data[7] | ((u_int64_t)data[6] << 8) | \
((u_int64_t)data[5] << 16) | ((u_int64_t)data[4] << 24) | \
((u_int64_t)data[3] << 32) | ((u_int64_t)data[2] << 40) | \
((u_int64_t)data[1] << 48) | ((u_int64_t)data[0] << 56); \
data += 8; \
T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \
(d) += T1; \
(h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \
j++; \
} while(0)
#define ROUND512(a,b,c,d,e,f,g,h) do { \
s0 = W512[(j+1)&0x0f]; \
s0 = sigma0_512(s0); \
s1 = W512[(j+14)&0x0f]; \
s1 = sigma1_512(s1); \
T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + \
(W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
(d) += T1; \
(h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \
j++; \
} while(0)
void sha512_transform(sha512Context *context, const u_int8_t *data) {
u_int64_t a, b, c, d, e, f, g, h, s0, s1;
u_int64_t T1, *W512 = (u_int64_t *)context->buffer;
int j;
/* Initialize registers with the prev. intermediate value */
a = context->state[0];
b = context->state[1];
c = context->state[2];
d = context->state[3];
e = context->state[4];
f = context->state[5];
g = context->state[6];
h = context->state[7];
j = 0;
do {
ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
} while (j < 16);
/* Now for the remaining rounds up to 79: */
do {
ROUND512(a,b,c,d,e,f,g,h);
ROUND512(h,a,b,c,d,e,f,g);
ROUND512(g,h,a,b,c,d,e,f);
ROUND512(f,g,h,a,b,c,d,e);
ROUND512(e,f,g,h,a,b,c,d);
ROUND512(d,e,f,g,h,a,b,c);
ROUND512(c,d,e,f,g,h,a,b);
ROUND512(b,c,d,e,f,g,h,a);
} while (j < 80);
/* Compute the current intermediate hash value */
context->state[0] += a;
context->state[1] += b;
context->state[2] += c;
context->state[3] += d;
context->state[4] += e;
context->state[5] += f;
context->state[6] += g;
context->state[7] += h;
/* Clean up */
a = b = c = d = e = f = g = h = T1 = 0;
}
#else /* SHA2_UNROLL_TRANSFORM */
void sha512_transform(sha512Context *context, const u_int8_t *data) {
u_int64_t a, b, c, d, e, f, g, h, s0, s1;
u_int64_t T1, T2, *W512 = (u_int64_t *)context->buffer;
int j;
/* Initialize registers with the prev. intermediate value */
a = context->state[0];
b = context->state[1];
c = context->state[2];
d = context->state[3];
e = context->state[4];
f = context->state[5];
g = context->state[6];
h = context->state[7];
j = 0;
do {
W512[j] = (u_int64_t)data[7] | ((u_int64_t)data[6] << 8) |
((u_int64_t)data[5] << 16) | ((u_int64_t)data[4] << 24) |
((u_int64_t)data[3] << 32) | ((u_int64_t)data[2] << 40) |
((u_int64_t)data[1] << 48) | ((u_int64_t)data[0] << 56);
data += 8;
/* Apply the SHA-512 compression function to update a..h */
T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
T2 = Sigma0_512(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
} while (j < 16);
do {
/* Part of the message block expansion: */
s0 = W512[(j+1)&0x0f];
s0 = sigma0_512(s0);
s1 = W512[(j+14)&0x0f];
s1 = sigma1_512(s1);
/* Apply the SHA-512 compression function to update a..h */
T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
(W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
T2 = Sigma0_512(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
} while (j < 80);
/* Compute the current intermediate hash value */
context->state[0] += a;
context->state[1] += b;
context->state[2] += c;
context->state[3] += d;
context->state[4] += e;
context->state[5] += f;
context->state[6] += g;
context->state[7] += h;
/* Clean up */
a = b = c = d = e = f = g = h = T1 = T2 = 0;
}
#endif /* SHA2_UNROLL_TRANSFORM */
void sha512_update(sha512Context *context, const u_int8_t *data, size_t len) {
size_t freespace, usedspace;
/* Calling with no data is valid (we do nothing) */
if (len == 0)
return;
usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
if (usedspace > 0) {
/* Calculate how much free space is available in the buffer */
freespace = SHA512_BLOCK_LENGTH - usedspace;
if (len >= freespace) {
/* Fill the buffer completely and process it */
bcopy(data, &context->buffer[usedspace], freespace);
ADDINC128(context->bitcount, freespace << 3);
len -= freespace;
data += freespace;
sha512_transform(context, context->buffer);
} else {
/* The buffer is not yet full */
bcopy(data, &context->buffer[usedspace], len);
ADDINC128(context->bitcount, len << 3);
/* Clean up: */
usedspace = freespace = 0;
return;
}
}
while (len >= SHA512_BLOCK_LENGTH) {
/* Process as many complete blocks as we can */
sha512_transform(context, data);
ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
len -= SHA512_BLOCK_LENGTH;
data += SHA512_BLOCK_LENGTH;
}
if (len > 0) {
/* There's left-overs, so save 'em */
bcopy(data, context->buffer, len);
ADDINC128(context->bitcount, len << 3);
}
/* Clean up: */
usedspace = freespace = 0;
}
void sha512_last(sha512Context *context) {
unsigned int usedspace;
usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
#if BYTE_ORDER == LITTLE_ENDIAN
/* Convert FROM host byte order */
REVERSE64(context->bitcount[0],context->bitcount[0]);
REVERSE64(context->bitcount[1],context->bitcount[1]);
#endif
if (usedspace > 0) {
/* Begin padding with a 1 bit: */
context->buffer[usedspace++] = 0x80;
if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
/* Set-up for the last transform: */
bzero(&context->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace);
} else {
if (usedspace < SHA512_BLOCK_LENGTH) {
bzero(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace);
}
/* Do second-to-last transform: */
sha512_transform(context, context->buffer);
/* And set-up for the last transform: */
bzero(context->buffer, SHA512_BLOCK_LENGTH - 2);
}
} else {
/* Prepare for final transform: */
bzero(context->buffer, SHA512_SHORT_BLOCK_LENGTH);
/* Begin padding with a 1 bit: */
*context->buffer = 0x80;
}
/* Store the length of input data (in bits): */
*(u_int64_t *)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
*(u_int64_t *)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
/* Final transform: */
sha512_transform(context, context->buffer);
}
void sha512_final(u_int8_t digest[], sha512Context *context) {
u_int64_t *d = (u_int64_t *)digest;
/* If no digest buffer is passed, we don't bother doing this: */
if (digest != NULL) {
sha512_last(context);
/* Save the hash data for output: */
#if BYTE_ORDER == LITTLE_ENDIAN
{
/* Convert TO host byte order */
int j;
for (j = 0; j < 8; j++) {
REVERSE64(context->state[j],context->state[j]);
*d++ = context->state[j];
}
}
#else
bcopy(context->state, d, SHA512_DIGEST_LENGTH);
#endif
}
/* Zero out state data */
bzero(context, sizeof(*context));
}
/*------------------------------------------------------------------*\
SHA-384:
\*------------------------------------------------------------------*/
void sha384_init(sha384Context *context) {
if (context == NULL)
return;
bcopy(sha384_initial_hash_value, context->state, SHA512_DIGEST_LENGTH);
bzero(context->buffer, SHA384_BLOCK_LENGTH);
context->bitcount[0] = context->bitcount[1] = 0;
}
void sha384_update(sha384Context *context, const u_int8_t *data, size_t len) {
sha512_update((sha512Context *)context, data, len);
}
void sha384_final(u_int8_t digest[], sha384Context *context) {
u_int64_t *d = (u_int64_t *)digest;
/* If no digest buffer is passed, we don't bother doing this: */
if (digest != NULL) {
sha512_last((sha512Context *)context);
/* Save the hash data for output: */
#if BYTE_ORDER == LITTLE_ENDIAN
{
/* Convert TO host byte order */
int j;
for (j = 0; j < 6; j++) {
REVERSE64(context->state[j],context->state[j]);
*d++ = context->state[j];
}
}
#else
bcopy(context->state, d, SHA384_DIGEST_LENGTH);
#endif
}
/* Zero out state data */
bzero(context, sizeof(*context));
}
/* ---------------------------------------------------------------- *\
\* ---------------------------------------------------------------- */
enum {
NONE = 0,
SHA256 = 256,
SHA384 = 384,
SHA512 = 512
};
#ifndef STAND_ALONE
static char* userhash = NULL;
static unsigned int method = 0;
static char* method_string = NULL;
static size_t method_digest_string_length = 0;
static int alock_auth_sha2_init(const char* args) {
if (!args) {
fprintf(stderr, "alock: error, missing arguments for [sha2].\n");
return 0;
}
if (strstr(args, "sha256:") == args) {
method = SHA256;
method_string = strdup("sha256");
method_digest_string_length = SHA256_DIGEST_STRING_LENGTH;
} else if (strstr(args, "sha512:") == args) {
method = SHA512;
method_string = strdup("sha512");
method_digest_string_length = SHA512_DIGEST_STRING_LENGTH;
} else if (strstr(args, "sha384:") == args) {
method = SHA384;
method_string = strdup("sha384");
method_digest_string_length = SHA384_DIGEST_STRING_LENGTH;
} else {
fprintf(stderr, "alock: error, not supported hash in [sha2].\n");
return 0;
}
if (strlen(&args[7]) > 0) {
char* arguments = strdup(&args[7]);
char* tmp;
char* arg = NULL;
for (tmp = arguments; tmp; ) {
arg = strsep(&tmp, ",");
if (arg && !userhash) {
if (strstr(arg, "hash=") == arg && strlen(arg) > 5) {
if (strlen(&arg[5]) == method_digest_string_length - 1) {
if (!userhash)
userhash = strdup(&arg[5]);
} else {
fprintf(stderr, "alock: error, missing or incorrect hash for [%s].\n", method_string);
free(arguments);
return 0;
}
} else if (strstr(arg, "file=") == arg && strlen(arg) > 6) {
char* tmp_hash = NULL;
FILE* hashfile = fopen(&arg[5], "r");
if (hashfile) {
int c;
size_t i = 0;
tmp_hash = (char*)malloc(method_digest_string_length);
memset(tmp_hash, 0, method_digest_string_length);
for(i = 0, c = fgetc(hashfile);
i < method_digest_string_length - 1 && c != EOF; i++, c = fgetc(hashfile)) {
tmp_hash[i] = c;
}
fclose(hashfile);
} else {
fprintf(stderr, "alock: error, couldnt read [%s] for [%s].\n",
&arg[5], method_string);
free(method_string);
free(arguments);
return 0;
}
if (!tmp_hash || strlen(tmp_hash) != method_digest_string_length - 1) {
fprintf(stderr, "alock: error, given file [%s] doesnt contain a valid hash for [%s].\n",
&arg[5], method_string);
if (tmp_hash)
free(tmp_hash);
free(method_string);
free(arguments);
return 0;
}
userhash = tmp_hash;
}
}
}
free(arguments);
} else {
fprintf(stderr, "alock: error, missing arguments for [%s].\n", method_string);
free(method_string);
return 0;
}
if (!userhash) {
fprintf(stderr, "alock: error, missing hash for [%s].\n", method_string);
free(method_string);
return 0;
}
alock_string2lower(userhash);
return 1;
}
static int alock_auth_sha2_deinit() {
if (userhash)
free(userhash);
userhash = NULL;
if (method_string)
free(method_string);
method_string = NULL;
method = NONE;
method_digest_string_length = 0;
return 1;
}
static int alock_auth_sha2_auth(const char* pass) {
if (!pass || strlen(pass) < 1 || !userhash || !method)
return 0;
switch (method) {
case SHA256: {
unsigned char digest[SHA256_DIGEST_LENGTH];
unsigned char stringdigest[SHA256_DIGEST_STRING_LENGTH];
unsigned int i;
sha256Context sha256;
sha256_init(&sha256);
sha256_update(&sha256, (unsigned char*)pass, strlen(pass));
sha256_final(digest, &sha256);
memset(stringdigest, 0, SHA256_DIGEST_STRING_LENGTH);
for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
sprintf((char*)&stringdigest[i*2], "%02x", digest[i]);
}
return (strcmp((char*)stringdigest, userhash) == 0);
}
break;
case SHA512: {
unsigned char digest[SHA512_DIGEST_LENGTH];
unsigned char stringdigest[SHA512_DIGEST_STRING_LENGTH];
unsigned int i;
sha512Context sha512;
sha512_init(&sha512);
sha512_update(&sha512, (unsigned char*)pass, strlen(pass));
sha512_final(digest, &sha512);
memset(stringdigest, 0, SHA512_DIGEST_STRING_LENGTH);
for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
sprintf((char*)&stringdigest[i*2], "%02x", digest[i]);
}
return (strcmp((char*)stringdigest, userhash) == 0);
}
break;
case SHA384: {
unsigned char digest[SHA384_DIGEST_LENGTH];
unsigned char stringdigest[SHA384_DIGEST_STRING_LENGTH];
unsigned int i;
sha384Context sha384;
sha384_init(&sha384);
sha384_update(&sha384, (unsigned char*)pass, strlen(pass));
sha384_final(digest, &sha384);
memset(stringdigest, 0, SHA384_DIGEST_STRING_LENGTH);
for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
sprintf((char*)&stringdigest[i*2], "%02x", digest[i]);
}
return (strcmp((char*)stringdigest, userhash) == 0);
}
break;
};
return 0;
}
struct aAuth alock_auth_sha256 = {
"sha256",
alock_auth_sha2_init,
alock_auth_sha2_auth,
alock_auth_sha2_deinit
};
struct aAuth alock_auth_sha384 = {
"sha384",
alock_auth_sha2_init,
alock_auth_sha2_auth,
alock_auth_sha2_deinit
};
struct aAuth alock_auth_sha512 = {
"sha512",
alock_auth_sha2_init,
alock_auth_sha2_auth,
alock_auth_sha2_deinit
};
/* ---------------------------------------------------------------- *\
\* ---------------------------------------------------------------- */
#else
void usage() {
printf("asha2 - reads from stdin to calculate a sha2-hash.\n"
"usage:\n"
" asha2 <256|384|512>\n");
}
int main(int argc, char* argv[]) {
unsigned char digest[SHA512_DIGEST_LENGTH];
size_t i;
unsigned char c;
unsigned int method = 0;
size_t method_digest_length = 0;
if (argc < 2 || strlen(argv[1]) < 3) {
usage();
exit(EXIT_SUCCESS);
}
if (strncmp("256", argv[1], 3) == 0)
method = SHA256;
else if (strncmp("384", argv[1], 3) == 0)
method = SHA384;
else if (strncmp("512", argv[1], 3) == 0)
method = SHA512;
else
method = NONE;
switch (method) {
case SHA256: {
sha256Context sha256;
sha256_init(&sha256);
while((c = fgetc(stdin)) != (unsigned char)EOF) {
sha256_update(&sha256, &c, 1);
}
sha256_final(digest, &sha256);
method_digest_length = SHA256_DIGEST_LENGTH;
}
break;
case SHA384: {
sha384Context sha384;
sha384_init(&sha384);
while((c = fgetc(stdin)) != (unsigned char)EOF) {
sha384_update(&sha384, &c, 1);
}
sha384_final(digest, &sha384);
method_digest_length = SHA384_DIGEST_LENGTH;
}
break;
case SHA512: {
sha512Context sha512;
sha512_init(&sha512);
while((c = fgetc(stdin)) != (unsigned char)EOF) {
sha512_update(&sha512, &c, 1);
}
sha512_final(digest, &sha512);
method_digest_length = SHA512_DIGEST_LENGTH;
}
break;
default:
usage();
exit(EXIT_FAILURE);
break;
};
for(i = 0; i < method_digest_length; ++i)
printf("%02x", digest[i]);
printf("\n");
fflush(stdout);
return EXIT_SUCCESS;
}
#endif /* STAND_ALONE */
/* ---------------------------------------------------------------- *\
\* ---------------------------------------------------------------- */